The present invention relates to a heat exchanger, and more particularly to a tube heat exchanger having fins in the automotive field.
Tube heat exchangers generally have a bundle of tubes disposed parallel to one another and inside which a first heat transfer fluid circulates. A second heat transfer fluid is for its part intended to traverse the bundle of tubes by passing between the tubes. In order to improve the exchange of heat between the two heat transfer fluids, fins are disposed between the tubes in the passage of the second heat transfer fluid.
However, for heat exchangers such as evaporators or evaporator/condensers, when the first refrigerant fluid circulating in the heat exchanger is cold and the second heat transfer fluid is also cold, there is a risk of frost forming on the surface of the heat exchanger. The formation of frost reduces the amount of second heat transfer fluid able to traverse the heat exchanger and thus reduces the efficiency of the latter. Such a phenomenon can in particular occur at an evaporator/condenser placed on the front face of the motor vehicle when the latter is used within a heat pump.
One known solution is to periodically circulate hot first heat transfer fluid within the tubes of the heat exchanger in order to melt any frost. However, it is possible that this solution is not suitable because it requires temporarily interrupting the mode of operation used. This then involves a reduction in passenger comfort.
One of the aims of the present invention is therefore to overcome at least some of the drawbacks of the prior art and propose an improved heat exchanger that has reduced risks of frost forming on its surface.
The present invention therefore relates to a heat exchanger having a bundle of tubes disposed parallel to one another and inside which a first heat transfer fluid is intended to circulate, a second fluid being intended to traverse the bundle of tubes between said tubes, said bundle of tubes having fins disposed between said tubes, said fins having corrugations extending in the direction of the length of the tubes, said corrugations having peaks in contact with said tubes and flanks connecting said peaks, the fins having a first portion and a second portion, the first portion being disposed upstream of the second portion in the direction in which the second heat transfer fluid passes through, the first and second portions being made from two separate parts with different shapes.
The fact that the first and second portions are separate parts makes it possible to vary the shapes of the first and second portions in order to reduce the risks of frost forming. It is likewise possible to use different first portions depending on the use and the position of the heat exchanger within the motor vehicle.
According to one aspect of the invention, the first portion projects beyond the front edge of the tubes. The fact that the first portion of the fins projects beyond the front edge of the tubes makes it possible to prevent the formation of frost. This is because the projection makes it possible to better discharge water condensates on the front face of the heat exchanger, that is to say that face of the heat exchanger via which the second heat transfer fluid enters. Frost is therefore less likely to form.
According to another aspect of the invention, the second portion extends over 100% to 66% of the width of the tubes.
According to another aspect of the invention, the peaks of the first portion have a profile exhibiting a flat part and the peaks of the second portion have a rounded profile such that the corrugations have a sinusoidal profile. The fact that the peaks of the first portion of the fins have a flat part makes it possible to prevent the formation of frost. This is because the peaks with a flat part make it possible to better discharge water condensates on the front face of the heat exchanger, that is to say that face of the heat exchanger via which the second heat transfer fluid enters. Frost is therefore less likely to form. The fact that the second portion has peaks with a rounded profile makes it possible to exchange heat between the first and the second heat transfer fluid better than with peaks having a flat part, as on the first portion.
According to another aspect of the invention, the pitch of the corrugations of the first portion and the pitch of the corrugations of the second portion are different.
According to another aspect of the invention, the pitch of the corrugations of the first portion is greater than the pitch of the corrugations of the second portion.
According to another aspect of the invention, the thickness of the first portion is greater than the thickness of the second portion.
According to another aspect of the invention, the first portion has, in the direction of the width of the tubes, at least two series of slots offset with respect to one another.
According to another aspect of the invention, the first portion extends along a rectilinear profile in the direction of the width of the tubes.
According to another aspect of the invention, the first portion extends along a corrugated profile in the direction of the width of the tubes.
Other features and advantages of the invention will become more clearly apparent from reading the following description, which is given by way of illustrative and non-limiting example, and the appended drawings, in which:
In the various figures, identical elements bear the same reference numbers.
The following embodiments are examples. Although the description refers to one or more embodiments, this does not necessarily mean that each reference relates to the same embodiment, or that the features apply only to a single embodiment. Individual features of different embodiments can also be combined and/or interchanged to provide other embodiments.
In the present description, some elements or parameters may be indexed, such as, for example, first element or second element and first parameter and second parameter or else first criterion and second criterion, etc. In this case, this is simple indexing for differentiating and denoting elements or parameters or criteria that are similar but not identical. This indexing does not imply that one element, parameter or criterion tales priority over another and such denotations can easily be interchanged without departing from the scope of the present description.
In the present description, “placed upstream” is understood to mean that one element is placed in front of another with respect to the circulation direction of a fluid. By contrast, “placed downstream” is understood to mean that one element is placed after another with respect to the circulation direction of the fluid.
The fins 6 are for example corrugated or crenellated strips, placed between the tubes 2 and fixed to said tubes 2. The tubes 2 and the fins 6 are generally made of metal, for example aluminum or aluminum alloy. The tubes 2 and the fins 6 forming the bundle are then generally fixed to one another by brazing. Reference is then made to a brazed bundle.
The heat exchanger 1 also has two manifolds 3 or header tanks, a manifold 3 being disposed at each end of the tubes 2. These manifolds 3 each have a header plate 4 and a cover 8 covering the header plate 4 and closing the manifold 3. These manifolds 3 make it possible to collect and/or distribute the first heat transfer fluid so that it circulates in the tubes 2.
The header plate 4 sealingly connects the manifold 3 and bundle of tubes 2. In addition, the header plate 4 may have a rectangular overall shape. The header plate 4 also has a multiplicity of orifices which have a shape corresponding to the shape of the section of the tubes 2 and are able to receive the ends of the tubes 2. The tubes 2 are sealingly fixed to the header plate 4.
Since the tubes 2, the fins 6 and the header plates 4 are brazed, the latter may be made of a metallic material, in particular aluminum or aluminum alloy. Reference is then made to a brazed heat exchanger 1.
As is shown in
The fins 6 have in particular a first portion 6A and a second portion 6B. These first 6A and second 6B portions are made from two separate parts with different shapes. The first 6A and second 6B portions then correspond to two corrugated strips disposed side by side in the direction of the length of the tubes 2. The fact that the first 6A and second 6B portions are separate parts makes it possible to vary the shapes of the first 6A and second 6B portions in order to reduce the risks of frost forming. It is likewise possible to use different first portions 6A depending on the use and the position of the heat exchanger within the motor vehicle.
The first portion 6A is disposed upstream of the second portion 6B in the direction in which the second heat transfer fluid passes through, represented by an arrow 100 in
The second portion 6B stops at the rear edge of the tubes 2. What is meant here by rear edge of the tubes 2 is that edge of the tubes 2 that is opposite to the front edge.
As is shown in
The fact that the first portion 6A of the fins 6 projects beyond the front edge of the tubes 2 and that its peaks 61 have a flat part 64 makes it possible to prevent the formation of frost. This is because the peaks 61 with a flat part 64 and the projection make it possible to better discharge water condensates on the front face of the heat exchanger 1, that is to say that face of the heat exchanger via which the second heat transfer fluid enters. Frost is therefore less likely to form.
The fact that the second portion 6B has peaks 61 with a rounded profile 65 makes it possible to exchange heat between the first and the second heat transfer fluid better than with peaks 61 having a flat part 64, as on the first portion 6A.
The second portion 6B may in particular extend over 100% to 66% of the width of the tubes 2. What is meant here by width is the distance between the front edge and the rear edge of the tubes 2. When the second portion 6B extends over 100% of this width, the first portion 6A is limited to that part of the fin 6 that projects beyond the tubes 2.
The first portion 6A preferably has smooth flanks 62. These smooth flanks 62 likewise make it possible to properly discharge the condensates. The second portion 6B may for its part have louvers 63 on its flanks 62. What is meant here by louver 63 is a deflecting wall which is in one piece with the flank 62, is inclined with respect to said flank 62 and and protrudes on either side of the flank 62. Said deflecting wall defines an opening on either side of the flank 62 such that the second heat transfer fluid can pass from one side of the flank 62 to the other.
As is shown in
According to a variant illustrated in
Within one and the same corrugation 60, the louvers 63 of the two flanks 62 may have an identical orientation. It is likewise possible to envisage that the orientation of the louvers 63 is reversed from one flank 62 to the other.
The first 6A and second 6B portions are preferably disposed rim to rim and do not fit in one another. For this, the corrugations 60 of the first 6A and second 6B portions are preferably offset from one another. As can be seen in
The thickness e of the first portion 6A (visible in
The fact that the first 6A and second 6B portions are separate parts makes it possible to vary their shapes in relation to one another in order to limit the risks of frost forming. Thus, as is illustrated in
It is likewise possible to envisage even more complex first portions 6A, for example as is illustrated in
The fact that the first 6A and second 6B portions are separate parts also makes it possible to facilitate and simplify the manufacture of the fins 6 and the heat exchanger 1. The first 6A and second 6B portions of the fins 6 can thus be made separately, for example by shaping two separate metal plates by means of rollers exhibiting different patterns in order to form separate peaks 61 between the first 6A and second 6B portions. The two portions 6A, 6B are then disposed side by side during the manufacture of the heat exchanger 1 and fixed to the tubes 2, for example by brazing.
Therefore, it is clear that the heat exchanger 1, owing to the presence of two separate portions 6A, 6B of fin 6, makes it possible to reduce the risks of frost forming when said heat exchanger 1 is in use.
Number | Date | Country | Kind |
---|---|---|---|
2000041 | Jan 2020 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2020/052482 | 12/16/2020 | WO |