Landscape edging (also referred to as “lawn edging” or “garden edging”) exists to define borders between landscape areas, such as a lawn and a mulched garden bed. Landscape edging can be metal, plastic, wood, brick or a number of other materials, so long as it gives the look of a clean edge. Many people prefer the finished look that a clean edge lends to a landscape design. Landscape edging also provides functional benefits such as: 1) containing lawn grasses, which spread via stolons, so that grass does not start growing in planting beds; and 2) containing mulch in a planting bed, preventing it from spilling out. Landscape edging generally comes in long rectangular sections with a “lip” formed by a partially hollow top to strengthen the portion of the edging above ground and define a border. The bottom side is buried at the border of two areas so that the landscape edging frames and separates the two areas. Illumination of lawn and shrubbery adds safety lighting at night and is aesthetically pleasing.
Currently, conventional landscape lighting systems are obtrusive and do not have the ability to direct light in a specific direction near a target area in a subtle way. Stake lights, in particular, are very noticeable, suffer from maximum exposure to the elements, and are not suitable to direct light into a specific direction.
Described herein is a tube light system that illuminates adjacent walkways for safety and visibility, and addresses problems and shortcomings of prior light systems. The embodiments described herein may be incorporated into landscape edging during the manufacturing process or may be retro-fitted into existing landscape edging to direct light in a subtle way close to the ground. Additionally, embodiments of the present disclosure allow the tube light system to be secured in such a way as not to depend on the tolerances of the landscape edging to hold it together.
In one example, the tube light system includes an elongated, tubular housing extending between a first end and a second end, the housing having a closed recess connecting the first and second ends and sized to fit within a receiving member, and a light source fixed in the recess of the housing, the light source having a first surface and a second surface opposite the first surface, the light source including one or more light-emitting elements on any of the first and second surfaces. The one or more light-emitting elements are completely enclosed within the housing, and adjusting the orientation of the housing relative to the receiving member changes the direction of light emitted by the at least one light-emitting element.
In another example, a lighting assembly may include the tube light system described above fitted within a receiving member.
In yet another example, a method of manufacturing a lighting assembly may include: 1) constructing two substantially mirror sections of an elongated, tubular housing, the housing having a closed recess connecting first and second ends of the housing and sized to fit within a receiving member, 2) constructing a light source, the light source including at least one light-emitting element, 3) disposing the light source within one of the two substantially mirror sections of the housing, 4) fixedly mating the other of the two substantially mirror sections of the housing to the one of the two substantially mirror sections, so that the light source is fixedly disposed within the closed recess, 5) vertically cutting a receiving member to create an opening, and 6) disposing the housing within the receiving member such that the light source emits light through the opening of the receiving member.
The tube light system of this disclosure is durable and maintenance free, and can easily be replaced as an element of a landscape lighting system if it ceases to function properly. The tube light system of the current disclosure has few moving parts and is easy to install. It may also provide a compact and pleasing appearance that blends into the landscape, without being too obvious during the daylight hours.
The foregoing and other objects, features and advantages will be apparent from the following more particular description of the embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the embodiments.
In the description that follows, features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.
The terms “comprise,” “include,” and/or plural forms of each are open ended and include the listed parts and can include additional parts that are not listed. “And/or” is open ended and includes one or more of the listed parts and combinations of the listed parts.
Turning now to
The housing 14 may contain a suitable recess 26 between a first and second end of the housing 14 for the light source 12 and other circuit components. The recess 26 may also provide a space for a manufactured seal such as an “o” ring and a male/female latch feature (not shown). A length of the recess can vary, but may be about 1.5 inches. The light source 12 of the tube light system 10 may have one or more light-emitting elements 20, such as a light-emitting diode (LED), mounted directly on a surface of a printed circuit board 22, which also carries at one or both of its ends at least one electrical element 24, such as a wire or a terminal (
Turning now to
The elongated housing 14 may also serve to hold two adjoining landscape edging sections 32 and 34 together, and can provide protection for electrical connections with further light fixtures or a power source (not shown). The tube light system 10 may also serve to hold together two adjoining sections 32, 34 having a round or similar profile. The elongated housing 14 could alternatively be incorporated into one or more plates or other fixtures (not shown) that join sections 32, 34 of the landscape edging 30. The elongated housing 14 permits the light source 12 to be redirected by changing its position in relation to the hollow top 36 (or similar member). Since the outside of the housing 14 fits inside the hollow top 36, the light source 12 can be rotated both up and down inside the hollow top 36, as further described below. It is therefore possible to precisely direct the light source 12 alongside a walkway on one side of the edging 30, and later to rotate the light source 12 to illuminate a landscape on the opposite side. In this way, the tube light system 10 maintains a low profile but provides directional light to needed areas. The landscape edging 30 may further include a spacer 40 between edging 32, 34 to maintain a continuous barrier.
To rotate the elongated housing 14 in relation to the hollow top 36 of the edging 30, one need only to grasp the exposed section of housing 14 located outside of the edging 30 and, using a hand or a suitable tool, such as a pair of pliers, rotate the housing 14 relative to the hollow top 36 so that the light source 12 is properly directed and illuminating the desired location. Friction force is created by inserting the assembled sections 16, 18 of housing 14 that contain friction fins 38 (
As shown in
As shown in
In a further embodiment, shown in
In another embodiment, shown in
It is contemplated by this disclosure that the hollow top 36 may be installed as a separate unit to commercially available landscape edging 30. While the hollow top 36 and the landscape edging 30 are normally extruded as one piece, if designed with specific features, the hollow top 36 and edging 30 could be adjoined in the field. In this example, a copper ribbon could be extruded as part of the hollow top 36 and covered by a membrane which may be polyethylene. The tube light system 10 would incorporate an adapter or other means to pierce through the membrane, resulting in contact to the electrical conductors, providing power for the tube light system 10. The circuit is then continued through the printed circuit board 22 of the tube light system 10, feeding the adjacent section(s) of edging 30 or similar by the same method. This process can be repeated and is only limited by the capacity of the power supply, the capacity of the printed circuit board 22, or the capacity of the concealed conductors inside the hollow top 36.
It is also contemplated within this disclosure that the tube light system 10 may serve as a modular “building block” which can be incorporated with other tube light systems 10. Each time a tube light system 10 is added, a connection with electrical wires is required. Commercially existing “connectors” that do not require wire ends to be stripped may be used for this purpose. One connector (not shown) may be placed into each side of the hollow end of top 36 of the elongated housing 14, protected and invisible from the outside, and preferably a sufficient length of electrical wire is incorporated that allows the tube light system 10 to be easily removed and replaced later, if such replacement is ever required.
Although the present disclosure has been described with respect to various examples, it would be apparent to one of ordinary skill in the art that various other examples are possible, without departing from the spirit and scope as defined in the appended claims.
This application claims priority to and benefit of U.S. Provisional Patent Application No. 62/027,483 filed Jul. 22, 2014 and entitled UNIVERSAL TUBE LIGHT SYSTEM, the contents of which are incorporated by reference herein in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6882118 | Kobayashi | Apr 2005 | B2 |
7021809 | Iwasa | Apr 2006 | B2 |
7794107 | Schoen | Sep 2010 | B2 |
8113696 | Striebel et al. | Feb 2012 | B2 |
20070087619 | Nall | Apr 2007 | A1 |
20070274067 | Sloan | Nov 2007 | A1 |
20100201239 | Mostoller | Aug 2010 | A1 |
20140376231 | Cox, Jr. | Dec 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
62027483 | Jul 2014 | US |