1. Field of the Invention
The present invention relates to a tubeless lighting device, and in particular to a light-emitting diode (LED) based lighting device that has a tubeless structure for indoor and outdoor applications for lighting and features environmental conservation, power saving, and volume reduction.
2. The Related Arts
Fluorescent lamps are well known for indoor and outdoor applications for lighting. A conventional fluorescent tube gives off light by applying electrical discharging and requires various components, including a tube mount, tube connectors, and a ballast (transformer) and a starter. This leads to the disadvantages of being heavy and bulky and requiring a large amount of ferrous material. Further, the fluorescent tube contains therein mercury, which is considered a server environmental pollutant. Thus, the fluorescent tube, once disposed of, often leads to pollution to the environment. Further, a number of contacts must be formed among the tube, the tube connectors, the ballast, and the starter and such contacts present an increase of impedance that leads to unnecessary and additional consumption of power. This is the reason that the fluorescent tube gets high power consumption and a low power factor and this is also a cause for reducing the lifespan of the tube and the ballast.
Further, the conventional fluorescent tube uses tube connectors made of plastics, which are susceptible to deterioration due to high temperature, leading to structural instability, so that when the fluorescent is subjected to external vibration or earthquakes, the tube may unexpectedly fall and hurt people standing around. Thus, the total weight of lighting devices is often subjected to a limitation in applications where vibration/quake must be constrained. This leads to a constraint for the applications of the fluorescent tubes.
Solutions for such a problem are available in the market, such as Taiwan Utility Model Nos. M368749 and M365434, US Patent Publication No. 2007/0228999, which discloses a “retrofit LED lamp for fluorescent fixtures without ballast”, US Patent Publication No. 2007/0223225, which discloses a “LED lighting unit applied to a fluorescent lighting fixture” and U.S. Pat. No. 7,114,830, which discloses an “LED replacement for fluorescent lighting”. All these prior art references provide an LED based lighting module that is constructed in the form of a florescent tube for replacing the fluorescent tube. Such LED based solutions, although effectively eliminating the mercury based pollutant contained in the fluorescent tubes, require components, such as LED circuit boards, heat dissipaters, wires, and shades, that are not naturally decomposable and may thus cause an increase of the garbage in replacing lighting tubes and eventually lead to secondary pollution to the environments.
Those prior art references provide LED lighting tubes that still need the components used in the fluorescent lamps, such as tube mounts, tube connectors, ballasts, and starters, as well as wiring arrangements, so that the known LED lighting tubes are still of the disadvantages of being heavy and bulky, large consumption of ferrous material, having a large number of contacts, and short lifespan. Further, the LED based lighting tubes require LED circuit boards, heat dissipaters, wiring, and shades, all such components adding an undesired increase of overall weight, making it difficult to apply to environments where vibrations/quakes must be constrained. Further, the problem associated with structural instability between the tube and the tube connectors still exists that may cause underside hurting to a user. Thus, the known LED based lighting tube still suffers a number of drawbacks that must be overcome for a more prevailing trend of LED based lighting tubes.
The state-of-the-art fluorescent tubes of LED based power-saving lighting devices require a tube, which makes the known lighting devices heavy and bulky and consuming a large amount of ferrous material and adding a large number of contact points, leading to excessive power consumption, environmental pollution, and shortened lifespan. Structural instability may occur between the known lighting tube and tube connectors, which often causes falling of the tube to hurt users and limits the applications of the lighting tubes in certain environments, where vibrations/quakes must be constrained.
In view of such problems, it is desired to provide a tubeless lighting device that reduces the manufacturing cost, the consumption of ferrous material, the number of contact points and factors that might cause pollution to the environment, and that increases the lifespan and reduce the risk of hurting the users.
Thus, a primary objective of the present invention aims to provide a tubeless light-emitting diode (LED) based lighting device, which comprises at least one base, at least one LED lighting module, and at least one control circuit. The base comprises a heat dissipation body. The LED lighting module is mounted to the base so that the base provides the LED lighting module with the functions of retention and heat dissipation. The control circuit is mounted to the base and is electrically connected to power wiring of the LED lighting module for ON/OFF switching of the LED lighting module and supplying of operation power. As such, a tubeless lighting device that emits light in a power saving manner and is constructed in a volume reduced manner is provided.
A secondary objective of the present invention is to provide a tubeless LED based lighting device, which comprises an LED lighting module made up of at least one multi-dice packaged LED chip, each of the multi-dice package LED chip emitting light that is projected in the form of a surface light source and realizes illumination as a surface light source.
A third objective of the present invention is to provide a tubeless LED based lighting device, which comprises an LED lighting module made up of at least one circuit board and a plurality of individual single-dice light-emitting diode elements each of which is electrically connected to the circuit board so that each of the single-dice light-emitting diode elements gives of light in the form of a point light source for realizing projection and illumination of light.
A fourth objective of the present invention is to provide a tubeless LED based lighting device, which comprises a base to which a shade is coupled in such a way that the shade covers outside an LED lighting module mounted to the base to provide a function of adjustment of light projection for the light emitted from the LED lighting module.
A fifth objective of the present invention is to provide a tubeless LED based lighting device, which comprises a layer of waterproof substance in an interior space and on a surface thereof to provide water protection for an LED lighting module and a control circuit.
The effectiveness of the tubeless LED based lighting device of the present invention is that a tubeless lighting device is composed of a base, an LED lighting module, a control circuit, and a shade, which greatly reduces the overall weight and size of a lighting device and also reduces the amount of ferrous material used and the number of contact points in the circuit thereof, so as to reduce power consumption, eliminate potential risk of environmental pollution, and extend the lifespan of the lighting device. Further, the risk of falling tube hurting users can be avoided to ensure operation safety and make the tubeless LED based lighting device applicable to various environments.
The present invention will be apparent to those skilled in the art by reading the following description of preferred embodiments thereof, with reference to the attached drawings, wherein:
With reference to the drawings and in particular to
At least one LED lighting module 20 is provided and a single multi-dice packaged LED chip is taken as an example for the LED lighting module 20 in the first embodiment. The LED lighting module 20 has a surface forming a plurality of through holes 21 respectively corresponding to the inner-threaded holes 111 of the base 10 and respectively receiving threaded fasteners 22, such as screws or bolts, for connecting and fixing the LED lighting module 20 to the connection section 11 of the base 10, whereby the base 10, as a whole, serves heat dissipation for the LED lighting module 20.
At least one control circuit 30 is provided, having the functions of controlling ON/OFF switching of the LED(s) and conversion between alternate current (AC) and direct current (DC). The control circuit 30 is received and retained in the receiving channel 12 of the base 10. The control circuit 30 comprises least one power cable 31 and a control cable 32. The power cable 31 extends out of the receiving channel 12 of the base 10 to selectively connect to an external power source, such as an electric main. The control cable 32 is electrically connected to the LED lighting module 20, so that the LED lighting module 20 is controlled by the control circuit 30 for ON/OFF switching operation. Further, the control circuit 30 supplies a direct current for the operation of the LED lighting module 20 so that the LED lighting module 20 may persistently provide a surface light source.
The connection between the LED lighting module 20 and the base 10 is not limited to threaded coupling by threaded fasteners 22 extending through and engaging the inner-threaded holes 111 of the base 10. The retention of the control circuit 30 to the base 10 is also not limited to receiving the control circuit 30 in the receiving channel 12 of the base 10. Also, the arrangement of the power cable 31 of the control circuit 30 extending out of the base 10 is not limited to extending through the receiving channel 12, and various equivalent arrangements and means can be taken to realize the same results without departing from the scope of the present invention.
Referring to
Referring to
The mounting of tubeless LED based lighting device 100 shown in
Referring to
Referring to
In the embodiment illustrated in
Referring to
In the embodiment illustrated in
Referring to
A comparison was made between the tubeless LED based lighting device 100 of the present invention and the conventional T8 and T5 fluorescent tubes and the result is given as follows:
According to the data listed in the above table, the tubeless LED based lighting device 100 of the present invention show superior in all respects listed to the conventional T8 and T5 fluorescent tubes. It is apparent that the present invention possesses the advantage of reducing the weight of lighting device, reducing the volume of lighting device, reducing the amount of ferrous material consumed, reducing the number of contact points of wiring arrangement and power consumption, eliminating pollution to the environment, extending the lifespan of lighting device, and ensuring operation safety of lighting device.
Although the present invention has been described with reference to the preferred embodiments thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
098224862 | Dec 2009 | TW | national |