This disclosure relates generally to luer-type and other male to female and female to male connectors as well as temporarily sealed needleless access ports for use in delivering fluids to, taking fluids from, and draining fluid from subjects. Particularly, this disclosure relates to improved connectors having one or more protective ribs or guards and overlapping extensions that can be bent, compressed, and/or broken away for standard connector use, and any other type of connectors or couplings that are in use to connect tubes and syringes. This disclosure also relates to improved devices to delivering gases to, or taking bases from patients using ventilators, and to connectors used in biotechnology culture, or any other use in which sterility is desired.
Standard connectors and other male to female and female to male connectors are used to connect tubes and syringes for the delivery of sterile fluids or gases, typically have a male element that is inserted into a female element with such couplings then reversibly secured by various screw-on and locking devices.
Human skin is colonized by a microbiome, or a mixture of colonizing microbes that typically includes coagulase negative staphylococci, which are the most common agents found to cause infections of indwelling catheter lines. Skin colonizing microorganisms can also comprise Staphylococcus aureus, a vast array of Gram-negative organisms, yeast, and fungi. Many of these microorganisms exhibit resistance to one or multiple antimicrobial agents, and have become very difficult to treat.
Similarly, connections between tubes or conduits connecting ventilators to patients are potential locations for contamination. Because ventilators often have water vapor that may condense on connectors, tubes, and conduits, bacterial and other undesirable organisms may colonize ventilator components, thereby causing increased morbidity and mortality.
Other uses include biotechnology, cell culture, and laboratory technologies in which maintaining a sterile conduit for fluids is desired.
Pathogenic organisms adhere easily to any protruding or otherwise exposed elements of standard intravenous lines and a variety of other male to female connectors as well as to needle and needleless injection ports. Accidentally caught microorganisms can grow into a biofilm, whose formation is aided by the fluid filled capillary spaces that are formed when a fluid coupling is made.
Free swimming (planktonic) organisms are released from such biofilms. They are carried into the bloodstream, colonize the inner surfaces of indwelling catheters and the clot(s) that invariably form at the end of infusion lines.
The colonization, clotting, and the inflammatory responses to these organisms cause catheter occlusions, emboli, signs and symptoms of inflammation, seeding into organs, and prompt diagnostic dilemmas, that lead to various diagnostic and therapeutic interventions, that apart from the avoidable human suffering caused, drive healthcare costs out of proportion to the small expense for the proposed passive protective devices.
In an embodiment, the sterile male element of a connector usually protrudes beyond a securing element (also known as “part” or “portion”) of the connector to ease the insertion into the female counterpart of a connector. This functional advantage is offset by the disadvantage of the protruding male or female element being exposed to accidental contact with non-sterile environmental surfaces that include the skin of a patient or the caregiver, furniture, clothing and the like. This risk of avoidable colonization and infection also pertains to all freely exposed parts of female insertion couplings also referred to as hubs, and the needle, as well as needleless injection ports that frequently have valves or membranes and are particularly prone to colonization with pathogens that subsequently cause line and catheter infections.
Because US healthcare providers are no longer being paid to treat nosocomial infections that could have been prevented, there is now a strong incentive for the modification of design of long-held and well-known connectors. This incentive also extends into the growing area of the more economic home health care and by necessity, home self-care.
The passive protective devices or guards of this disclosure address these economic and healthcare problems by reducing or preventing healthcare associated infections. Protective guards can include flexible elements or “ribs” that extend outwards from the connector element and also extend beyond the distal (open) end of a male or female lur connector element. When in use, these protective guards may make contact with a source of contamination, but keep the critical ends of the connectors from making contact with the source of contamination.
In certain embodiments, a guard can be made with flexible protective ribs or resilient fibers that can be moved from a relaxed position by forces used to connect complementary elements of a connector. In certain embodiments, a guard can be a solid element that can be fitted to a device. Even if a connection is not completed, and the connector elements must be re-engaged, the flexible protective guard can help maintain sterility of the device, and thereby decrease the likelihood of inadvertent contamination of the device and the patient. In certain embodiments, a guard is axially compressible to allow for swabbing of these connector elements.
This disclosure is described with reference to specific embodiments thereof. Other features can be appreciated with reference to the figures, in which:
This disclosure includes some well-known terms and others that are defined below.
The term “connector” means a device used to connect tubing together.
The term “element” means a part of a device.
The term “connector part” or “luer part” means either a male or female element.
The term “luer” or “Luer” means a device for connecting two devices together to provide a central channel, through which a fluid or gas can flow between the devices. The term “luer” is not intended to be solely for use in intravenous lines, but also includes any connector where sterility of the interior of the device is desired. The term “luer” includes any connector used to couple fluid carrying device.
The term “male” means an element or part of a connector having a protruding end sized and adapted to fit with a counterpart “female” element.
The term “female” means an element or part of a connector having a receiving element sized and adapted to accommodate a “male” element.
The term “guard” or “protector” means a device affixed to an element that extends laterally, distally, or both laterally and distally beyond the end of an element to provide a shield to hinder a male or female element from making unintended contact with a source of potential contamination.
The term “fiber” or “rib” means a resilient element that alone or in combination with other fibers or ribs can form a guard.
The term “cage” means a configuration of a guard having a network of interdigitated or interlocking ribs, or a configuration is produced by molding resilient materials into a non-rigid but solid shape.
Connectors of this disclosure include an outer addition to existing intravenous or gas line connectors and couplings. The new couplings of this disclosure provide passive prevention of avoidable healthcare associated infections, specifically of intravenous line, catheter infections that follow catheter hub colonization, or respirators. (1. DE 2843281 A1 Oct. 4, 1978 Apr. 10, 1980; 2. Linares J., Sitges-Serra A, Garau J., et al., Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J. Clin Microbiol 1985; 21:357; 3. Tenney J H Moody M R, Newman K A, et al., Adherent microorganisms on luminal surfaces of long-term intravenous catheters. Importance of Staphylococcus epidermidis in patients with cancer. Arch Intern Med 1986; 146:1949; 4. Miller J J, Venus B, Mathru M., Comparison of the sterility of long-term central venous catheterization using single lumen, triple lumen, and pulmonary artery catheters. Crit. Care. Med. 1984; 12:634; and 5. Salzman M B, Isenberg H D, Shapiro J F, et al., A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J. Infect. Dis. 1993; 167:487), but their application also includes chest tubes, gas lines, urinary drainages and all post-surgical or interventional drainages and includes needle and needleless access ports, with the later ones having the highest propensity to become colonized and cause infections.
Embodiments of the disclosure include improved designs that build upon known protective devices consisting of protective guards, rib elements and extensions, such as those described in patent DE3816191A1 and related publications (6. Leon C. Alvarez-Lerma F., Ruiz-Santana S., et al, Antiseptic chamber-containing hub reduces central venous catheter-related infection: a prospective, randomized study. Crit. Care. Med. 2003; 31:1318; 7. Walterspiel, J N, Protective Ribs for Male Connectors. Inf. Control and Hospital Epidemiology 1988: 9(8): 342; 8. Walterspiel, J N, Protective Ribs for Connectors, Inf. Control and Hospital Epidemiology 1986; 7(11): 564). Protective guards and extensions on fluid or gas couplings can now, by design, be compressed, bent outwards and/or broken off during the process of closing and securing a coupling. This novel feature is that they can never be physically in the way of closing and securing a connection, regardless of the make, shape or form of the respective counter connector or coupling and its securing provisions.
An embodiment includes a connector having a guard can be made of a resilient, pliable, and easily bendable material, compared to the solid and rigid materials that medical grade couplings are made of. An embodiment may comprise a resilient material having indentations and/or thinner parts that allow the resilient material to bend, and combinations of both resilient and rigid materials. Guards, by virtue of their composition and/or design can be easily bent away from or arolund of a counter connector part that may be in their way during secure closing of a connector.
A schematic rendering such a bending embodiment of a guard having a protective rib is depicted in
An embodiment of a guard having two or more protective ribs can be made of a resilient, pliable, and/or easily bendable material, can be distinguished from the solid materials that medical grade couplings are made of, or where the guard can have indentations and/or a thinner element that can allow it to bend. Guards having protective ribs, by virtue of their composition and/or design can be easily bent away from any counter connector parts that may be in their way during the secure closing of a connector. A guard may comprise one or more ribs mounted on circular rotating ring can be shaped in repeating S forms that can form a receiving opening funnel.
Resilient, flexible materials for guards and ribs can include pliable plastics, such as polyvinyl chloride (PVC) having various amounts and kinds of high and low molecular plasticizers that can include phthalates, polyethylene (PE), and can include various forms and mixtures such as ultra-high-molecular-weight polyethylene, cross-linked polyethylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene, very-low-density polyethylene, chlorinated polyethylene and copolymers, polypropylene (PP) in its various forms, including polypropylene glycol (PPG), silicone elastomers in its various forms, including cross-linked polydemethylsiloxane, fluoroplastics, polystyrene, polyethylene terephthalate (PET) and other types of plastics and combinations. Materials may be transparent and/or colored that fulfill the sterility, sterilizability, visibility, and flexibility requirements for said protectors.
The material for the protectors, their clip-on embodiments, and their parts can also include metals, specifically non corrosive alloys. The surfaces can have a hydrophobic coating and color coding.
An embodiment of this disclosure has a protective ribs comprising a chain or series of globular or ovoid elements that are connected by thinner areas that can bend and/or break away when coming in contact with a counterpart connector part that may be in their way during the closing of a coupling. Globular or ovoid forms of the elements and combinations thereof can facilitate the slip-over and rotation-over protruding parts of a counter coupling. A schematic drawing of a rib of such an embodiment is depicted in
An embodiment of a protective rib cage comprises two or more protecting ribs of undulant shape that can be compressed and/or bend inwards or outwards when the coupling parts are positioned, to or intertwined with each other during the process of closing and securing a luer connector. Two schematic drawings of ribs of such an embodiment are depicted in
An embodiment of a protective rib cage comprises two or more protecting ribs with bending and/or breakpoints whose inner surfaces are slanted at an outward angle, so that said rib, in aggregate, form a funnel with the individual ribs being bent out or even breaking off when the funnel is pried open under the gliding pressure over impeding parts of the counter connecting coupling. An example of a rib in such an embodiment is depicted in
In use, a male element with its cage type protector can have a smaller diameter than the diameter of a female protector, so that a male element can fit inside a female protector. It can be appreciated that a female guard may be sized to have a smaller diameter than a male guard, so a female guard and female element may fit within a male guard.
It can be appreciated that a female protector need not be circular. Rather, it can be made of one or more “stacked” compressible rings, or can be helical.
For avoidance of doubt, the guards and protectors described herein are not limited in use to liquid-liquid connectors. Rather, any fluid-fluid connector can be designed and made based on the disclosure herein for use in any device, including respirators and other gas-gas connectors. Additionally, guards of this disclosure can be used to prevent unwanted contamination in the pharmaceutical and biotechnology industries, where sterility of connectors is desired.
To manufacture connectors with guards, one can obtain commercially available connectors and apply guards of this disclosure to them, thus producing a combined/guard product.
A person of ordinary skill in the art can use the disclosures and teachings contained herein to create variations without undue experimentation and with a reasonable likelihood of success. All such equivalents are considered part of this disclosure.
Embodiments of this disclosure have advantages over existing devices that do not have flexible protective structures. In DE 2843281; reference 7. Walterspiel, J N, Protective Ribs for Male Connectors. Inf. Control and Hospital Epidemiology 1988: 9(8): 342; and 8. Walterspiel, J N, Protective Ribs for Connectors, Inf. Control and Hospital Epidemiology 1986; 7(11): 564, the protectors were rigid. To use rigid protectors, it is necessary to standardize the number of rigid elements in the protector, and they complementary elements (male and female) must be very carefully connected. This can lead to increased difficulty, breakage of the protector elements, and loss of time, and increased likelihood of contamination. Additionally, use of rigid protectors generally require use of a rotating ring, so the male and female components can be screwed together without difficulty.
In contrast, with the use of the flexible, resilient protectors of this disclosure, it is easier to intercalate male and female components together and further reduce the likelihood of contamination of fluid in a luer or other connecting device.
Improved connectors of this disclosure can find wide use in medical, veterinary, research, biotechnology, chemical industries, and any other industry requiring sterile operations involving connecting fluid-carrying elements to each other.
Each of the references cited herein are fully incorporated by references herein as if separately so incorporated.
This Patent Cooperation Treaty (PCT) International patent application claims priority to U.S. provisional patent application No. 62/180,201, filed 16 Jun. 2015. This provisional application is incorporated herein fully by reference.
Number | Date | Country | |
---|---|---|---|
62180201 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2016/047058 | Aug 2016 | US |
Child | 15789388 | US |