Tubing expansion with an apparatus that cycles between different diameter configurations

Information

  • Patent Grant
  • 7063149
  • Patent Number
    7,063,149
  • Date Filed
    Monday, February 2, 2004
    20 years ago
  • Date Issued
    Tuesday, June 20, 2006
    18 years ago
Abstract
A method of expanding tubing comprises the steps: providing a length of expandable tubing; locating an expansion tool, such as a cone, in the tubing; and applying impulses to the tool to drive the tool through the tubing and expand the tubing to a larger diameter. The tubing may be located downhole and may have a solid wall or a slotted wall.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to tubing expansion, and in particular to an expansion tool and method for expanding tubing downhole.


2. Description of the Related Art


The oil and gas exploration and production industry is making increasing use of expandable tubing for use as, for example, casing and liner, in straddles, and as a support for expandable sand screens. The tubing may be slotted, such as the tubing and sand screens sold under the EST and ESS trade marks by the applicant, or may have a solid wall. Various forms of expansion tools have been utilised, including expansion cones and mandrels which are pushed or pulled through tubing by mechanical or hydraulic forces. However, these methods typically require transfer of significant forces from surface, and furthermore there are difficulties associated with use of hydraulic forces in the expansion of slotted tubing; the presence of the slots in the unexpanded tubing prevents the use of hydraulic force to drive the cone or mandrel through the tube. A number of the difficulties associated with expansion cones and mandrels may be avoided by use of rotary expansion tools, which feature radially extending rollers which are urged outwardly into rolling contact with the tubing to be expanded while the tool is rotated and advanced through the tubing. However, it has been found that the torques induced by such rotating tools may induce twisting in the expandable tubing, particularly in slotted tubing.


It is among the objectives of embodiments of the present invention to provide an expansion method and apparatus which obviates or mitigates these difficulties.


SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided a method of expanding tubing, the method comprising the steps:

    • providing a length of expandable tubing of a first diameter;
    • locating an expansion tool in the tubing;
    • applying a plurality of impulses to the tool to drive the tool through the tubing and expand the tubing to a larger second diameter.


According to a further aspect of the present invention there is provided tubing expansion apparatus comprising:

    • an expansion tool for advancement through a length of expandable tubing to expand the tubing from a smaller first diameter to a larger second diameter; and
    • means for transmitting a tubing-expanding impulse to the tool.


Preferably, the expansion operation is carried out downhole.


The impulses may be provided by any appropriate means and thus the invention provides a flexibility in the range of apparatus and supports that may be utilised to expand tubing downhole. The impulses may be produced hydraulically, for example by pumping fluid through a valve or other variable flow restriction, such that the variation in flow through the restriction induces a variation in fluid pressure. The resulting varying fluid pressure may act directly on the expansion tool, or indirectly via a shock sub or the like. One embodiment of the invention may involve the combination of a conventional hydraulic hammer with an expansion cone provided with an anvil or other arrangement for cooperating with the hammer, possibly also in combination with an appropriate number of weight subs. Alternatively, or in addition, a reciprocating or otherwise movable mass may be utilised, the mass reciprocating in response to a controlled varying flow of hydraulic fluid, and impacting on the expansion tool, typically via an anvil. It is preferred that the impulse force is created adjacent the expansion tool, to limit attenuation. As such arrangements would not require a fluid seal between the expansion tool, typically in the form of an expansion cone, and the tubing, these embodiments of the invention permit expansion of slotted tubing by means of hydraulically-actuated apparatus. Furthermore, the use of hydraulic pressure to induce or create impulses or impacts will tend to allow expansion of tubing utilising lower pressures than are required to drive an expansion cone through tubing using conventional methods; the apparatus utilised may therefore be rated for operation at lower pressures, and be less complex and expensive.


Other embodiments may utilise mechanical actuation, for example a rotating shaft may be linked to the expansion tool via an appropriate cam profile. In a preferred embodiment, a rotating shaft is coupled to a reciprocating mass via a cam arrangement, such that rotation of the shaft causes the mass to impact on the expansion tool. The mass may be spring-mounted, the spring tending to bias the mass towards the tool. The mass may be restrained against rotation relative to the shaft, and may be splined or otherwise coupled to the tool. Rotation of the shaft may be achieved by any appropriate means, for example from a top drive or kelly drive on surface, by a positive displacement motor (PDM) or other form of downhole hydraulic motor, or by a downhole electric motor.


Alternatively, electrical or magnetic actuation may be utilised, for example a magnetic pulsing field may be produced to induce reciprocal movement of a magnetic mass which impacts on the expansion tool, or a piezo-ceramic stack or magneto-strictive materials may be provided which expand or contract in response to applied electrical potentials.


As the expansion tool is not simply being pushed or pulled through the tubing by a substantially constant elevated force applied via the tool support, the tool support may not necessarily have to be capable of transmitting a compression or tension force of similar order to the force applied to the tool to achieve expansion. This facilitates use of lighter, reelable supports, such as coil tubing, and may permit, use of a downhole tractor to advance the expansion tool through the tubing.


The expansion tool may be provided in combination with a further expansion tool, and in particular a further expansion tool which utilises a different expansion mechanism. In one embodiment, a rolling element expansion tool may be provided above an expansion cone to which impulses or impacts are applied, the leading expansion cone providing an initial degree of expansion and the following rolling element expansion tool providing a further degree of expansion. If the rolling element expansion tool is provided with one or more radially movable rolling elements, such an arrangement offers the advantage that the expansion tools are easier to pull back out; the tubing will have been expanded to a larger diameter than the normally fixed diameter expansion cone.


Where the expansion tool is in the form of an expansion cone, the cone angle may be selected such that advancement of the cone through the tubing is retained. Where the cone angle is steeper, the tendency for the tubing to elastically contract between impacts may be sufficient to overcome any residual applied force or weight, and the friction between the cone and the tubing, thus pushing the cone back. However, such difficulties may be overcome by appropriate selection of cone angle or by application of weight or provision of a ratchet or slip arrangement.


The impulses are preferably applied to the expansion tool with a frequency of at least one cycle per second, and most preferably with a frequency between 10 and 50 Hz. If desired or appropriate higher frequencies may be utilised, and indeed in certain applications ultrasonic frequencies may be appropriate.


In existing downhole applications, where any significant length of tubing is to be expanded, it is convenient for the expansion tool to advance through the bore at a rate of approximately 10 feet (3 metres) per minute. For this rate of advancement, the frequency of the impulses or impacts applied to the tool are preferably in the region of 20 Hz, as this equates to a distance of travel of the tool of around 2.5 mm per impact. For any significantly slower frequencies, the travel of the tool per impact required to obtain the preferred rate of advancement becomes difficult to achieve.


The apparatus preferably defines a throughbore to permit fluid communication through the apparatus, and to permit tools and devices, such as fishing tools or cement plugs, to be passed through the apparatus.


In embodiments of the invention utilised to expand solid-walled or otherwise fluid-tight tubing, the impulse expansion mechanism may be assisted by applying elevated fluid pressure to the interior of the tubing in the region of the expansion tool, as described in our co-pending PCT patent application PCT/GB01/04958, the disclosure of which is incorporated herein by reference. In such embodiments, the fluid pressure force may provide a tubing expansion force approaching the yield strength of the tubing, such that the additional expansion force supplied by the expansion tool and necessary to induce yield and allow expansion of the tubing is relatively low. The elevated pressure may be present at a substantially constant level, or may be provided in the form of pulses, timed to coincide with the impulses to the expansion tool.


According to a still further aspect of the present invention there is provided a tubing expansion apparatus 400, the apparatus comprising:

    • an expansion device 402 for advancement through a length of expandable tubing 404 to expand the tubing 404 from a smaller first diameter to a larger second diameter, the device 402 being adapted to cycle between a smaller diameter first configuration (illustrated in FIG. 4) and a larger diameter second configuration (illustrated in FIG. 5);
    • means for cycling the device between said configurations; and
    • means for advancing the cycling means through the tubing.


The device 402 may comprise a hollow flexible body 406, the dimensions of the body 406 being variable in response to variations in internal fluid pressure caused by a pressure responsive member 408 that provides the means for cycling the device. Preferably, the body 408 is elastomeric. As shown in FIG. 6, the The body 406 may carry rigid members 600 for contact with an internal surface of the tubing 404.


According to a yet further aspect of the present invention there is provided a method of expanding tubing, the method comprising:

    • providing a length of expandable tubing 404 of a first diameter;
    • locating an expansion device 402 in the tubing 404;
    • cycling the expansion device 402 between a smaller diameter first configuration and a larger diameter second configuration using a cycling device, in said second configuration the expansion device 402 describing a greater diameter than said tubing first diameter such that the tubing 404 is expanded to a greater second diameter; and
    • advancing the cycling device through the tubing 404.


Preferably, the device is cycled at least once a second.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:



FIG. 1 is a part-sectional view of tubing expansion apparatus in accordance with a first embodiment of the present invention;



FIG. 2 is a schematic illustration of tubing expansion apparatus in accordance with a second embodiment of the present invention;



FIG. 3 is a schematic illustration of tubing expansion apparatus in accordance with a third embodiment of the present invention;



FIG. 4 is a part-sectional view of an expansion device adapted to cycle between smaller and larger diameter configurations:



FIG. 5 is a part-sectional view of the expansion device shown in FIG. 4 in the larger diameter configuration; and



FIG. 6 is part-sectional view an expansion device with rigid members for contact with an internal surface of tubing to be expanded.





DETAILED DESCRIPTION OF THE DRAWINGS


FIG. 1 of the drawings illustrates tubing expansion apparatus 10 being utilised to expand an expandable sand screen 12 downhole. The screen 12 comprises a metal mesh sandwiched between two slotted metal tubes, and is sold by the applicant under the ESS trade mark. The apparatus 10 is adapted to be mounted on the lower end of a suitable support, which may be in the form of a string of drill pipe.


The upper end of the apparatus 10 features a drive sub 14 provided with an appropriate top connection 16 for coupling to the lower end of the drill pipe, as noted above. A shaft 18 is coupled to the lower end of the drive sub 14, the lower end of the shaft 18 providing mounting for an expansion cone 20, via an appropriate thrust and radial bearing 22. Mounted around the shaft 18 is a reciprocating mass 26, with a sliding radial bearing 28 being provided between the mass 26 and the shaft 18. In addition, three drive dogs 30 extend radially from the shaft to engage respective wave-form cam grooves 32 provided in the inner face of the annular mass 26. Each groove 32 extends 360° around the inner face of the mass 26.


The lower end of the mass 26 features castellations 36 which engage with corresponding castellations 38 on an anvil defined by the upper face of the expansion cone 20. The castellations 36, 38 prevent relative rotational movement between the mass 26 and the cone 20, but permit a degree of relative axial movement therebetween, as will be described.


Mounted around the shaft 18 and engaging the upper end of the mass 26 is a mass return spring 40, a thrust bearing 42 being provided between the upper end of the spring 40 and the drive sub 14.


The apparatus 10 defines a through bore 44 allowing fluids and other devices to pass through the apparatus 10. Thus the apparatus 10 does not have to be removed from the bore to allow, for example, a cementing operation to be carried out.


In use, the apparatus 10 is mounted on a suitable support which, as noted above, may take the form of a string of drill pipe. The apparatus 10 is then run into the bore to engage the upper end of the unexpanded sandscreen 12. The sandscreen 12 may have been installed in the bore previously, or may be run in with the apparatus 10 when provided in combination with appropriate running apparatus.


With the cone 20 engaging the upper end of the sandscreen 12, the support string is then rotated at a speed of between 500 and 600 RPM, such that the shaft 18 also rotates. The cone 20 is prevented from rotating by the friction between the outer face of the cone 20 and the inner surface of the sandscreen 12. Due to the inter-engagement of the castellations 36, 38, the mass 26 is also prevented from rotating. However, due to the interaction between the drive dogs 30 and the respective cam grooves 32, the mass 26 is forced to reciprocate, as described below.


The grooves 32 define a wave form, including an inclined portion 41 and a substantially vertical portion 43, such that as the dogs 30 move along the respective inclined portions 41, the mass 26 is moved upwards, against the action of the spring 40. On the dogs 30 reaching the bottom ends of the substantially vertical groove portions 43, the spring 40 moves the mass 26 downwards, to impact on the upper face of the cone 20. The grooves 32 are arranged to provide four such impacts per rotation, such that rotating the shaft 18 at between 500 and 600 RPM causes the mass to reciprocate at a frequency between 2000 and 2400 cycles per minute (33 to 40 Hz).


The resulting impacts on the cone 20 drive the cone 20 downwardly through the sandscreen 12 in small steps, typically of around 1.25 to 1.5 mm (to give an average cone advancement rate of around 3 metres per minute), expanding the sandscreen 12 from its initial first diameter to a larger second diameter.


The use of impacts or impulses to drive the cone 20 through the tubing 12 tends to reduce the weight which must be applied to the apparatus 10 to drive the cone 20 through the tubing 12, when compared to a conventional cone expansion apparatus. This provides greater flexibility in the choice of support string for the apparatus 10, and the manner of applying force or weight to the cone 20. In the above-described embodiment, reference is made to a supporting string of drill pipe being rotated from surface. However, in other embodiments of the present invention the apparatus 10 may be mounted on a reelable support, such as coil tubing. In such an embodiment, rotation may be provided by a suitable downhole motor, such as a positive displacement motor (PDM) or an electric motor. Furthermore, the apparatus may also be provided in combination with a tractor, to provide motive force for the apparatus.


In the above-described embodiment the expansion cone 20 provides all of the expansion effect, however in alternative embodiments an expansion cone may be provided in combination with a further expansion tool, for producing further expansion of the sandscreen 12. For example, a rolling element expansion tool may be provided to follow the expansion cone.


Reference is now made to FIG. 2 of the drawings, which is a schematic illustration of tubing expansion apparatus 50 in accordance with a second embodiment of the present invention, located in expandable solid-walled casing 52. The apparatus 50 comprises an impact hammer 54 which provides impulses to an expansion cone 56 provided with an anvil 58, and which operates to provide expansion in a substantially similar manner to the first-described embodiment. However, the apparatus 50 is adapted to allow provision of an additional hydraulic expansion force, as will be described.


The leading end of the apparatus 50 includes a seal 60 adapted to provide a sliding fluid-tight seal with the inner surface of the unexpanded casing 52, ahead of the cone 56. Thus, the volume of fluid above the seal 60, in which the expansion cone 56 is located, may be pressurised to create an additional expansion force. The hydraulic expansion force may be selected to provide an expansion force approaching the yield strength of the casing 52, such that the additional expansion force supplied by the expansion cone 56 and which is necessary to induce yield and allow expansion of the casing 52, is relatively low. In practice however, the hydraulic pressure force and the expansion force provided by the cone 56 will be determined taking account of local conditions, including the physical properties of the casing to be expanded, the pressure rating of the casing connectors, and the capabilities of the seals and pumps.


Reference is now made to FIG. 3 of the drawings which is a schematic illustration of tubing expansion apparatus 70 in accordance with a third embodiment of the present invention. The apparatus 70 is generally similar to the apparatus 50 described above, and additionally includes an arrangement 72 for providing pressure pulses, timed to coincide with the impulses or impacts produced by the impact hammer 74.


In this example, the hammer 74 impacts on a piston 76 provided in the face of the anvil 78, which piston 76 acts on fluid in a chamber 80 within the anvil 78 such that pressurised fluid exits the chamber 80 via ports 82 with each impact of the hammer 74. Sets of split steel seal rings 84, 85 are provided on the apparatus 70 below and above the ports 82, and are adapted to provide a sliding seal with the unexpanded casing 86 ahead of the expansion cone 88 and the expanded casing behind the cone 88, respectively. Thus, in addition to the standing elevated hydraulic pressure, held by the seal 90 at the leading end of the apparatus, the portion of the casing 86 to be expanded will experience additional pressure pulses, which further facilitate expansion of the casing 86.


The additional hydraulic expansion forces experienced by the casing 86 act to reduce the proportion of the expansion force that would otherwise have to be produced mechanically by the cone 88.



FIGS. 4 and 5 show a tubing expansion apparatus 400 disposed on a running string 401. The tubing expansion apparatus 400 includes an expansion device 402 for advancement through a length of expandable tubing 404 to expand the tubing 404 from a smaller first diameter to a lamer second diameter. The device 402 is adapted to cycle between a smaller diameter first configuration (illustrated in FIG. 4) and a larger diameter second configuration (illustrated in FIG. 5). The expansion apparatus additionally includes means for cycling the device between said configuration and means for advancing the cycling means through the tubing.


The device 402 may comprise a hollow flexible body 406 with the dimensions of the body 406 being variable in response to variations in internal fluid pressure. Preferably, the body 406 is elastomeric. As shown in FIG. 6, the body 406 may carry rigid members 600 for contact with an internal surface of the tubing 404.


For some embodiments, there is provided a method of expanding tubing that includes providing a length of expandable tubing 404 of a first diameter, locating an expansion device 402 in the tubing 404, cycling the expansion device 402 between a smaller diameter first configuration and a larger diameter second configuration using a cycling device, wherein in the second configuration the expansion device 402 describes a greater diameter than the tubing first diameter such that the tubing 404 is expanded to a greater second diameter, and advancing the cycling device through the tubing 404. Preferably, the device is cycled at least once a second.


It will be apparent to those of skill in the art that the above-described embodiments are merely exemplary of the present invention and that various modifications and improvements may be made thereto without departing from the scope of the invention.

Claims
  • 1. Tubing expansion apparatus, the apparatus comprising: an expansion device for advancement through a length of expandable tubing to expand the tubing from a smaller first diameter to a larger second diameter, the device being adapted to cycle between a smaller diameter first configuration and a larger diameter second configuration;a pressure responsive member for cycling the device between said configurations at least once a second; anda force application member for advancing the expansion device through the tubing.
  • 2. The apparatus of claim 1, wherein the device comprises a hollow flexible body, the dimensions of the body being variable in response to variations in internal fluid pressure.
  • 3. The apparatus of claim 2, wherein the body is elastomeric.
  • 4. The apparatus of claim 2, wherein the body carries rigid members for contact with an internal surface of the tubing.
  • 5. A method of expanding tubing, the method comprising: providing a length of expandable tubing of a first diameter;locating an expansion device in the tubing;cycling the expansion device between a smaller diameter first configuration and a larger diameter second configuration, in said second configuration the expansion device describing a greater diameter than said tubing first diameter such that the tubing is expanded to a greater second diameter, wherein the expansion device is cycled at least once a second; andadvancing the expansion device through the tubing.
Priority Claims (1)
Number Date Country Kind
0114872.5 Jun 2001 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of co-pending U.S. patent application Ser. No. 10/175,544, filed Jun. 19, 2002, issued as U.S. Pat. No. 6,695,065 on Feb. 24, 2004, which claims priority benefit under 35 USC § 119 of Great Britain application Ser. No. 0114872.5, filed Jun. 19, 2001. Both applications are herein incorporated by reference in their entireties.

US Referenced Citations (88)
Number Name Date Kind
761518 Lykken May 1904 A
1324303 Carmichael Dec 1919 A
1545039 Deavers Jul 1925 A
1561418 Duda Nov 1925 A
1569729 Duda Jan 1926 A
1597212 Spengler Aug 1926 A
1930825 Raymond Oct 1933 A
1981525 Price Nov 1934 A
2011036 Colmerauer Aug 1935 A
2153883 Foster et al. Apr 1939 A
2214226 English Sep 1940 A
2216226 Bumpous Oct 1940 A
2383214 Prout Aug 1945 A
2499630 Clark Mar 1950 A
2627891 Clark Feb 1953 A
2663073 Bieber et al. Dec 1953 A
2898971 Hempel Sep 1959 A
2970651 Roberts Feb 1961 A
3087546 Wooley Apr 1963 A
3191677 Kinley Jun 1965 A
3195646 Brown Jul 1965 A
3203483 Vincent Aug 1965 A
3326293 Skipper Jun 1967 A
3424244 Kinley Jan 1969 A
3467180 Pensotti Sep 1969 A
3477506 Malone Nov 1969 A
3528498 Carothers Sep 1970 A
3570598 Johnson Mar 1971 A
3616868 Bassinger Nov 1971 A
3712376 Owen et al. Jan 1973 A
3713481 Webb Jan 1973 A
3776307 Young Dec 1973 A
3785193 Kinley et al. Jan 1974 A
3818734 Bateman Jun 1974 A
3911707 Minakov et al. Oct 1975 A
3948321 Owen et al. Apr 1976 A
4069573 Rogers, Jr. et al. Jan 1978 A
4127168 Hanson et al. Nov 1978 A
4159564 Cooper, Jr. Jul 1979 A
4288082 Setterberg, Jr. Sep 1981 A
4319393 Pogonowski Mar 1982 A
4324407 Upham et al. Apr 1982 A
4429620 Burkhardt et al. Feb 1984 A
4508174 Skinner et al. Apr 1985 A
4531581 Pringle et al. Jul 1985 A
4588030 Blizzard May 1986 A
4697640 Szarka Oct 1987 A
4848469 Baugh et al. Jul 1989 A
4890682 Worrall et al. Jan 1990 A
5052483 Hudson Oct 1991 A
5086853 Evans Feb 1992 A
5271472 Leturno Dec 1993 A
5348095 Worrall et al. Sep 1994 A
5409059 McHardy Apr 1995 A
5435400 Smith Jul 1995 A
5472057 Winfree Dec 1995 A
5520255 Barr et al. May 1996 A
5553679 Thorp Sep 1996 A
5560426 Trahan et al. Oct 1996 A
5667011 Gill et al. Sep 1997 A
5685369 Ellis et al. Nov 1997 A
5695008 Bertet et al. Dec 1997 A
5706905 Barr Jan 1998 A
5901787 Boyle May 1999 A
6021850 Wood et al. Feb 2000 A
6029748 Forsyth et al. Feb 2000 A
6098717 Bailey et al. Aug 2000 A
6112818 Campbell Sep 2000 A
6325148 Trahan et al. Dec 2001 B1
6419025 Lohbeck et al. Jul 2002 B1
6425444 Metcalfe et al. Jul 2002 B1
6446323 Metcalfe et al. Sep 2002 B1
6527049 Metcalfe et al. Mar 2003 B1
6543552 Metcalfe et al. Apr 2003 B1
6543553 Bergeron Apr 2003 B1
6575240 Haut et al. Jun 2003 B1
6578630 Simpson et al. Jun 2003 B1
6585053 Coon Jul 2003 B1
6591905 Coon Jul 2003 B1
6598678 Simpson et al. Jul 2003 B1
6805196 Lawrence Oct 2004 B1
20010040054 Haugen et al. Nov 2001 A1
20020166668 Metcalfe et al. Nov 2002 A1
20030037931 Coon Feb 2003 A1
20030042022 Lauritzen et al. Mar 2003 A1
20030047322 Maguire et al. Mar 2003 A1
20050000692 Cook et al. Jan 2005 A1
20050077052 Ohmer Apr 2005 A1
Foreign Referenced Citations (14)
Number Date Country
0 961 007 Dec 1999 EP
8 871 50 Jan 1962 GB
1 448 304 Sep 1976 GB
2 216 926 Oct 1989 GB
2 320 734 Jul 1998 GB
2 329 918 Apr 1999 GB
WO 9324728 Dec 1993 WO
WO 9720130 Jun 1997 WO
WO 9918328 Apr 1999 WO
WO 9923354 May 1999 WO
WO 0037773 Jun 2000 WO
WO 0160545 Aug 2001 WO
WO 02052124 Jul 2002 WO
WO 02053867 Jul 2002 WO
Related Publications (1)
Number Date Country
20040154808 A1 Aug 2004 US
Divisions (1)
Number Date Country
Parent 10175544 Jun 2002 US
Child 10770373 US