Information
-
Patent Grant
-
6516875
-
Patent Number
6,516,875
-
Date Filed
Friday, July 13, 200123 years ago
-
Date Issued
Tuesday, February 11, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 166 7514
- 166 961
- 166 761
- 166 98
- 166 208
- 166 206
- 166 212
- 166 217
-
International Classifications
-
Abstract
A completion component such as a tubing hanger includes a lockdown mechanism with an actuating mandrel that includes a positively acting anti-backout mechanism, which can be remotely deployed. The mechanism comprises a tooth on an inwardly biased retention ring carried by the mandrel, and positively engageable with a corresponding profile on the tubing hanger. Detent pins are outwardly biased by a tubing hanger running tool latch piston to hold the tooth and profile out of engagement during installation of the tubing hanger and setting of the actuating mandrel.
Description
BACKGROUND OF THE INVENTION
This invention relates to lockdown mechanisms for completion components in hydrocarbon wells. For simplicity, much of the following discussion refers to tubing hanger lockdown mechanisms, although the invention is of more general applicability.
Tubing hangers and other completion components have a requirement to be rigidly locked into the wellhead, horizontal christmas tree or other receptacle in which they are landed, to ensure safe operating conditions. The tubing hanger is typically provided with an integral lock mechanism which when activated secures the tubing hanger to the wellhead. Any subsequent pressure load below the hanger will then not cause the hanger to rise within the wellbore, which would result in unsafe operating conditions.
Many tubing hanger lock mechanisms utilize an activating mandrel with a 4 degree taper to take account of equipment stack up tolerances. Activating mandrels with 4 degree tapers (or larger) are prone to work loose under certain operating conditions (e.g., vibration, cyclic loading, slug flow, etc.). This can lead to a reduction of the lock mechanism retention capacity, causing an unsafe condition.
Existing methods of retaining the mandrel in the set condition rely on either manual intervention with additional back up equipment (e.g., lockdown bolts in surface equipment), or integral devices that rely on friction contact with the activating mandrel.
SUMMARY OF THE INVENTION
The present invention provides a completion component having a lockdown mechanism comprising:
an actuating mandrel provided with a taper surface;
a locking dog engageable with the taper surface for movement between contracted and expanded positions;
a locking member carried by the actuating mandrel or completion component and having a radially directed locking profile;
a radially directed complementary locking profile being provided on the completion component or actuating mandrel, the locking profile being radially biased into engagement with the complementary locking profile so as to restrain the actuating mandrel against axial movement relative to the completion component; and
a running tool latch mechanism engageable with the locking member during installation of the completion component so as to move the locking profile and complementary locking profile out of engagement against said bias, whereby the actuating mandrel is free to move axially of the completion component.
Thus the invention provides a completion component lockdown mechanism with an actuating mandrel that includes a positively acting anti-backout device, which can be remotely deployed.
Preferably the locking profile and complementary locking profile comprise teeth having a positive rake angle such that forces acting on the actuating mandrel in a direction tending to move the locking dog towards the contracted position also cause the locking profile and complementary locking profile to move into tighter engagement.
The locking profile and/or the complementary locking profile may comprise an axially spaced series of teeth, to accommodate completion component stackup tolerances.
The lockdown mechanism may comprise a pin having a first end engageable by a latch piston of the running tool latch mechanism, and a second end arranged to move the locking member against said radial bias when the first end is so engaged. The pin first end may comprise a ball bearing.
The locking member may be a split ring which, for example, is radially inwardly biased and is carried in a groove formed in an axial bore of the actuating mandrel.
Further preferred features of the invention are in the following description of an illustrative embodiment.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
shows a tubing hanger with a lockdown mechanism embodying the invention, the tubing hanger being latched onto a running tool (“THRT”) and the lockdown mechanism being shown in an inactive (contracted) condition;
FIG. 2
shows a portion of
FIG. 1
on an enlarged scale;
FIGS. 2
a
and
2
b
show portions of
FIG. 2
on an enlarged scale;
FIG. 3
shows the tubing hanger and THRT of
FIG. 1
but with the lockdown mechanism activated (expanded);
FIG. 3
a
is an enlargement of a portion of
FIG. 3
; and
FIGS. 4 and 4
a
correspond to
FIGS. 3 and 3
a
, but show the THRT latch disengaged from the tubing hanger and the anti-backout device positively engaging the lockdown mechanism.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The preferred embodiment of the invention comprises a THRT
10
and a tubing hanger
12
having a lockdown mechanism that incorporates a positive anti-backout device. This device has three primary components: 1) a retention ring incorporating a locking profile, 2) a detent pin, and 3) a complementary locking profile on the tubing hanger.
1) Retention Ring
As shown, the retention ring
14
is an inwardly biased split ring with a single inner circumferential tooth
16
(
FIG. 2
a
). The tooth
16
is undercut to provide a locking profile with a positive rake angle R. The retention ring
14
is housed within an internal recess profile
28
on a lockdown mechanism actuating mandrel
26
. A collar
30
threaded into the top of the actuating mandrel
26
keeps the retention ring
14
within the recess profile
28
.
2) Detent Pins
Upper
18
and lower
20
detent pins are distributed around the circumference of the tubing hanger
12
. Each detent pin
18
,
20
is securely retained within a hole extending radially through the tubing hanger upper body and comprises a ball bearing
22
,
24
at its radially inner end. The length of each pin inclusive of the ball bearing is slightly greater than the thickness of the tubing hanger upper body in which it is housed, for reasons further explained below.
3) Complementary Locking Profile
This profile
32
comprises series of axially spaced, circumferential tooth grooves
34
on the outer surface of the tubing hanger upper body, between the upper
18
and lower
20
detent pins. It is made of sufficient axial length to accommodate the vertical tolerance stack of the actuating mandrel
26
. Each groove
34
provides a mating profile for the retention ring tooth
16
and thus likewise is undercut to produce a positive rake angle R.
Operating Principle
First, the tubing hanger lockdown mechanism is retracted ready for installation of the hanger in the wellhead. For this purpose, the actuating mandrel
26
is raised, substantially withdrawing its taper surface
36
from behind a lock ring
38
, as shown in FIG.
1
.
Then the THRT
10
is made up to the tubing hanger
12
. During this process the THRT latch piston
40
is extended. The lower end of the piston
40
moves a latch ring
42
into a corresponding internal profile in the tubing hanger
12
upper body, to latch the tubing hanger
12
onto the running tool
10
. The body of the latch piston
40
moves behind enlarged tips
44
of collet fingers
46
, retaining them beneath a shoulder inside the actuating mandrel collar
30
. In this way, the collar
30
is trapped between the finger tips
44
and the lower end of a tubing hanger setting piston assembly
48
, from which the collet fingers
46
extend. The tubing hanger setting piston assembly is vertically movable with respect to the latch ring
42
. The lockdown mechanism actuating mandrel is thereby rigidly connected for movement with the setting piston assembly
48
, relative to the tubing hanger upper body.
The vertical movement of the latch piston
40
past the ball bearings
22
,
24
causes outward radial displacement of the detent pins
18
,
20
, causing their rounded outer ends to sit proud of the tubing hanger upper body outside diameter.
The tubing hanger
12
and attached tubing (not shown) is then picked up, run in hole, landed and locked into the wellhead. During the process the THRT setting piston assembly
48
is extended. The vertical travel of the THRT setting piston assembly
48
moves the actuating mandrel
26
down, expanding the tubing hanger lock ring
38
into the wellhead profile
50
(
FIG. 3
a
), securing the hanger. As the actuating mandrel
26
moves down, the protruding ends of the detent pins
22
,
24
ride up a ramp surface
52
on the retention ring
14
, causing it to expand into the retention groove profile
28
. In this expanded condition, a radial clearance exists between the tooth
16
and the complementary locking profile
32
. On completion of the setting sequence but prior to disconnection of the THRT from the tubing hanger (see
FIGS. 3 and 3
a
), the retention ring tooth
16
will be opposite (or very close to), a retention groove
34
on the tubing hanger upper body, but will be held clear of the complementary locking profile
32
.
The THRT is next disengaged from the tubing hanger and retrieved to the surface. In the process the THRT latch piston
40
is retracted. The vertical movement of the piston
40
frees the pins
18
,
20
for inward movement and allows the retention ring
14
to contract to its free state. The retraction of the retention ring
14
will engage the positive rake tooth
16
into one of the grooves
34
of the complementary locking profile
32
. The actuating mandrel
26
is now positively retained on the tubing hanger
12
upper body (
FIGS. 4 and 4
a
). Withdrawal of the latch piston
40
disengages the latch ring
42
from the tubing hanger
12
and allows the collet fingers to flex inwardly for disengagement from the collar
30
.
Various modifications will be readily apparent. For example, the locking tooth
16
may be provided on the tubing hanger upper body, with the complementary locking profile on the retention ring
14
. Additionally or alternatively, more than one locking tooth
16
may be provided. The retention ring
14
may be outwardly biased and housed in the tubing hanger upper body, with the complementary locking profile on the actuating mandrel
26
. In that case the retention ring is held contracted out of engagement with the complementary locking profile, for example by bolts or bosses extending through the wall of the tubing hanger upper body and having heads engageable in vertically extending undercut camming grooves formed on the outside of the latch piston
40
.
It should be recognized that, while the present invention has been described in relation to the preferred embodiments thereof, those skilled in the art may develop a wide variation of structural and operational details without departing from the principles of the invention. Therefore, the appended claims are to be construed to cover all equivalents falling within the true scope and spirit of the invention.
Claims
- 1. A completion component having a lockdown mechanism comprising:an actuating mandrel provided with a taper surface; a locking dog engageable with the taper surface for movement between contracted and expanded positions; a locking member carried by the actuating mandrel or completion component and having a radially directed locking profile; a radially directed complementary locking profile being provided on the completion component or actuating mandrel, the locking profile being radially biased into engagement with the complementary locking profile so as to restrain the actuating mandrel against axial movement relative to the completion component; and a running tool latch mechanism engageable with the locking member during installation of the completion component so as to move the locking profile and complementary locking profile out of engagement against said bias, whereby the actuating mandrel is free to move axially of the completion component.
- 2. A completion component as defined in claim 1, wherein the locking profile and complementary locking profile comprise teeth having a positive rake angle such that forces acting on the actuating mandrel in a direction tending to move the locking dog towards the contracted position also cause the locking profile and complementary locking profile to move into tighter engagement.
- 3. A completion component as defined in claim 1, wherein the locking profile and/or the complementary locking profile comprise(s) an axially spaced series of teeth.
- 4. A completion component as defined in claim 1, wherein the lockdown mechanism comprises a pin having a first end engageable by a latch piston of the running tool latch mechanism, and a second end arranged to move the locking member against said radial bias when the first end is so engaged.
- 5. A completion component as defined in claim 4, wherein the pin first end comprises a ball bearing.
- 6. A completion component as defined in claim 1, wherein the locking member comprises a split ring.
- 7. A completion component as defined in claim 6, wherein the split ring is radially inwardly biased and is carried in a groove formed in an axial bore of the actuating mandrel.
US Referenced Citations (6)
Foreign Referenced Citations (1)
Number |
Date |
Country |
2 344 838 |
Jun 2000 |
GB |