This invention relates to a tubing injector, and in particular, but not exclusively, to an injector for injecting coiled tubing and other spoolable supports into a bore.
The oil and gas exploration and extraction industry make wide use of coiled tubing, in for example well intervention and coiled tubing drilling. Coiled tubing is spoolable and thus may be deployed far more rapidly than conventional jointed drill pipe. Furthermore, coiled tubing will withstand a degree of axial compression, and is thus suitable for use in horizontal wells, where other reelable supports, such as wireline, cannot be used. In order to inject coil tubing into a well, and also to pull the tubing from the well, a tubing injector must be provided on surface. Conventional tubing injectors are generally very large and heavy, and also relatively complex. The main reason for this is the very large pulling and injection forces required for the successful deployment of coiled tubing.
In the offshore section of the industry there is a requirement to inject tubing into surface and subset pipelines, down leg structures, and in some cases downhole. However, the restricted space and access available offshore often prevents the use of larger conventional injection systems, and thus places limits on the available applications for coiled tubing.
It is among the objectives of embodiments of the present invention to provide an alternative method of injecting pipe, and preferred embodiments of the invention can be constructed in a very compact package.
According to one aspect of the present invention there is provided a method of injecting or transporting a pipe using a set of rolling elements arranged in a housing or cage about the outside diameter of the pipe to be injected such that the rolling elements each have a skewed axis of rotation with respect to the center line of the pipe and are collectively urged into rolling contact with the outside diameter of the pipe such that the rotation of the housing or cage relative to the pipe will cause the pipe to be transported through the rotating cage or housing.
In other aspects of the invention, the rolling elements may be driven directly, although this would tend to rotate the pipe.
Reference is primarily made herein to pipe and tube, however those of skill in the art will realize that the invention may be used in conjunction with any substantially cylindrical elongate member.
These and other aspects of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
The Figures illustrate a coiled tubing injector in accordance with a preferred embodiment of the present invention. The injector is primarily intended for use in offshore applications, where space and access may be restricted, making use of conventional injector systems difficult if not impossible. Of course the injector may also be utilised in land-based applications, and will be particularly useful in locations where transporting equipment to and from the site is difficult.
The injector comprises a cylindrical body 10 (
Each of the roller traction assemblies 12, 14 are driven by means of separate hydraulic motors 32, 33 (shown invisible) mounted on the outside ends of the housing 10. Drive is transmitted from the hydraulic motors 32, 33 via a spur gear 20 (
The rollers 24 in each assembly 12, 14 are shaped such that the path through the rollers is approximately circular when viewed from one end, and the bearings 16 at each end of the individual rollers 24 are spherical or installed in a spherical mounting such that the skew angle of the roller can be varied by compression of the mounting plates 26 to which the bearings 16 are attached. The effect of increasing roller skew is to close down the diameter of the circular path through the rollers 24.
The tube 30 to be transported or injected is passed through the two pairs of counter rotating rollers, and the hollow jack, and pressure is applied by the hollow jack onto the ends of the roller cages 28, 29 on which the rollers are mounted, and the rollers 24 are forced to grip the tube.
Each roller traction assembly 12, 14 is driven in an opposite direction, causing the tube to be transported through the rollers and through the circular housing or body 10 in which the rollers are mounted.
The injection force applied to the tube is proportional to the hydraulic pressure applied to the hollow jack 18. The speed at which the tube is transported is be proportional to the hydraulic motor speed and the skew angle of the rollers 24. The direction of movement of the tube will depend on the direction of the roller skew, which will be arranged such that clockwise rotation of one pair of assemblies and anti-clockwise rotation of the other will induce one direction of tube movement. By reversing the direction of rotation of each pair of roller assemblies the tube is moved in the opposite direction.
It will be apparent to those of skill in the art that the above-described injector is relatively compact and simple in construction and operation when compared to conventional chain-driven or piston/cylinder actuated injectors. In particular, it will be apparent that the injector has a relatively small diameter, and thus may be more readily accommodated in sites where space is restricted.
It will further be apparent to those of skill in the art that the above-described embodiment is merely exemplary of the present invention and that various modifications and improvements may be made thereto, without departing from the scope of the present invention. In other embodiments the rollers may be driven directly, and in certain applications, the tendency of such an arrangement to rotate the tubing may be utilised to advantage in, for example bore cleaning or drilling. Where rotation of the tubing is to be avoided, a further set of rolling elements having axes of rotation at 90° to the axis of the tubing may be provided, the rolling elements being urged into rolling contact with the tubing to prevent rotation of the tubing.
Number | Date | Country | Kind |
---|---|---|---|
0017736.0 | Jul 2000 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB01/03257 | 7/19/2001 | WO | 00 | 6/16/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/06626 | 1/24/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3424012 | Hirmann | Jan 1969 | A |
3475972 | Steibel | Nov 1969 | A |
3684152 | Boden | Aug 1972 | A |
3746232 | Kirillov et al. | Jul 1973 | A |
5975203 | Payne et al. | Nov 1999 | A |
6202764 | Ables et al. | Mar 2001 | B1 |
Number | Date | Country |
---|---|---|
0 585 779 | Mar 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20040020661 A1 | Feb 2004 | US |