The principles disclosed herein relate to fiber optic cable systems. More particularly, the present disclosure relates to fiber optic cable systems having main cables and branch cables.
Passive optical networks are becoming prevalent in part because service providers want to deliver high bandwidth communication capabilities to customers. Passive optical networks are a desirable choice for delivering high speed communication data because they may not employ active electronic devices, such as amplifiers and repeaters, between a central office and a subscriber termination. The absence of active electronic devices may decrease network complexity and/or cost and may increase network reliability.
The portion of network 100 that is closest to central office 110 is generally referred to as the F1 region, where F1 is the “feeder fiber” from the central office. The F1 portion of the network may include a distribution cable having on the order of 12 to 48 fibers; however, alternative implementations may include fewer or more fibers. The portion of network 100 that includes an FDH 130 and a number of end users 115 may be referred to as an F2 portion of network 100. Splitters used in an FDH 130 may accept a feeder cable having a number of fibers and may split those incoming fibers into, for example, 216 to 432 individual distribution fibers that may be associated with a like number of end user locations.
Referring to
Stub cables are typically branch cables that are routed from breakout locations to intermediate access locations such as a pedestals, drop terminals or hubs. Intermediate access locations can provide connector interfaces located between breakout locations and subscriber locations. A drop cable is a cable that typically forms the last leg to a subscriber location. For example, drop cables are routed from intermediate access locations to subscriber locations. Drop cables can also be routed directly from breakout locations to subscriber locations hereby bypassing any intermediate access locations
Branch cables can manually be separated out from a main cable in the field using field splices. Field splices are typically housed within sealed splice enclosures. Formation of the sealed splice enclosures can be tiime consuming and expensive. There exists a need in the art for low-cost enclosures to protect cable branch (i.e., breakout) locations.
Certain aspects of the disclosure relate to fiber optic cable systems, packaging configurations and methods that facilitate the effective use and installation of pre-terminated fiber optic cable.
A variety of additional inventive aspects will be set forth in the description that follows. The inventive aspects can relate to individual features and to combinations of features. It is to be understood that both the forgoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
The present disclosure relates to mid-span breakout arrangements provided on distribution cables. Each breakout arrangement is provided at a breakout location to protect the optical coupling of a tether to a distribution cable.
Referring now to the figures in general, a typical breakout location 260 is provided at an intermediate point along the length of a distribution cable 220 (e.g., see
A tether 240 branches from the distribution cable 220 at the breakout locator 260. The fibers of the tether 240 are optically coupled to the fibers of the distribution cable 220.
A typical distribution cable includes a relatively large number of fibers (e.g., 72, 144 or more fibers). The fibers are typically positioned in at least one buffer tube. In certain embodiments, the fibers are typically segregated into separate groups with each group contained within a separate buffer tube. The fibers within each buffer tube can include either ribbon fibers or loose fibers.
The various aspects of the present disclosure are also applicable to distribution cables having fewer numbers of fibers (e.g., 2 or more fibers). Additionally, in alternative embodiments, the distribution cable can include an outer jacket enclosing a single buffer tube and at least two strength members extending on opposite sides of the single buffer tube (not shown). An outer strength layer/member, such as aramid fiber/yarn, can surround the single buffer tube within the jacket. The single buffer tube can enclose loose fibers or ribbon fibers.
A tether (e.g., a drop cable or a stub cable) 240 branches out from the distribution cable 220 at the breakout location 260 (e.g., see
One or more tether fibers (e.g., typically less than twelve fibers) 224t (
In the example shown, the outer jacket 250 includes an outer perimeter having an elongated transverse cross-sectional shape. As shown at
Referring to
It is preferred for the fibers 224t of the tether 240 to be pre-terminated to the fibers 224dc of the distribution cable 220. “Pre-terminated” means that the fibers 224t are fused (e.g., spliced) or otherwise connected to the fibers 224dc of the distribution cable 220 at the factory as part of the cable manufacturing process rather than being field terminated. The remainder of the breakout assembly 200 is also preferably factory installed.
Referring now to
In certain embodiments, the tube body 310 has a length L′ (
As best seen in
In the example shown in
In certain embodiments, a notch 316 is cut out of the periphery of the first end 302 of the tube at the slit 314. The notch 316 is defined by ramp surfaces that facilitate inserting the first end 302 of the tube 300 over the buffer tubes 222. When the first end 302 is pressed downwardly against the buffer tubes 222, the notch 316 can cause the fingers 322, 324 to flex apart and wrap around at least a portion of the circumference of the buffer tubes 222.
Referring now to
One of the buffer tubes 222 is then selected and a first window 408 is cut into the selected buffer tube 222 adjacent the first end 402 of the stripped region 400 and a second window 410 is cut into the buffer tube 222 adjacent the second end 404 of the stripped region 400. The fibers 224dc desired to be broken out are accessed and severed at the second window 410. After the fibers 224dc have been severed, the fibers 224dc are pulled from the buffer tube 222 through the first window 408 (see
To prepare the tether 240 to be incorporated into the breakout assembly 200, a portion of the outer jacket 250 is stripped away to expose the central buffer tube 242 and the strength members 246 (see
To connect the tether fibers 224t to the distribution cable fibers 224dc, the sleeve 202 and tube 300 are first slid over the fibers 224t of the tether 240. In certain embodiments, the sleeve 202 and tube 300 can be slid up over the buffer tube 242 and outer jacket 250 of the tether 240. The fibers 224t of the tether are then optically coupled (e.g., spliced) to the fibers 224dc of the distribution cable 220. After the fiber coupling process is complete, the sleeve 202 can be slid over the coupling location 205 (see
The tether 240 then can be mounted to the base 274 of the retention block 270. For example, as shown in
The first end 302 of the tube 300 is typically secured to the distribution cable 220 by wrapping the fingers 322, 324 of the tube 300 around the buffer tubes 222. The first end 302 can be secured to the distribution cable 220 either before or after securing the retention block 270 to the distribution cable 220. The second end 304 can be mounted to the protrusions 276, 278 of the retention block 270. In certain embodiments, tape is used to seal off the ends 302, 304 of the tube 300. For example, in one embodiment, two inch aluminum tape is wrapped around the buffer tubes 222 and the tube 300 at both ends 302, 304 of the tube 300 and adjacent the opening 312. Additional lengths of tape can also be used to further secure the tube 300 to the distribution cable 220.
The fibers are tested to confirm that the fibers meet minimum insertion loss requirements. After verifying insertion loss, an enclosure 280 (
The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
2047152 | Mitchell | Jul 1936 | A |
3691505 | Graves | Sep 1972 | A |
3845552 | Waltz | Nov 1974 | A |
3879575 | Dobbin et al. | Apr 1975 | A |
3912854 | Thompson et al. | Oct 1975 | A |
3912855 | Thompson et al. | Oct 1975 | A |
4085286 | Horsma et al. | Apr 1978 | A |
4107451 | Smith, Jr. et al. | Aug 1978 | A |
4152539 | Charlebois et al. | May 1979 | A |
4322573 | Charlebois | Mar 1982 | A |
4343844 | Thayer et al. | Aug 1982 | A |
4405083 | Charlebois et al. | Sep 1983 | A |
4413881 | Kovats | Nov 1983 | A |
4467137 | Jonathan et al. | Aug 1984 | A |
4475935 | Tanaka et al. | Oct 1984 | A |
4481380 | Wood et al. | Nov 1984 | A |
4490315 | Charlebois et al. | Dec 1984 | A |
4512628 | Anderton | Apr 1985 | A |
4528150 | Charlebois et al. | Jul 1985 | A |
4528419 | Charlebois et al. | Jul 1985 | A |
4549039 | Charlebois et al. | Oct 1985 | A |
4550220 | Kitchens | Oct 1985 | A |
4556281 | Anderton | Dec 1985 | A |
4570032 | Charlebois et al. | Feb 1986 | A |
4581480 | Charlebois | Apr 1986 | A |
4589939 | Mohebban et al. | May 1986 | A |
4591330 | Charlebois et al. | May 1986 | A |
4592721 | Charlebois et al. | Jun 1986 | A |
4595256 | Guazzo | Jun 1986 | A |
4609773 | Brown et al. | Sep 1986 | A |
4625073 | Breesch et al. | Nov 1986 | A |
4629597 | Charlebois et al. | Dec 1986 | A |
4648606 | Brown et al. | Mar 1987 | A |
4648919 | Diaz et al. | Mar 1987 | A |
4654474 | Charlebois et al. | Mar 1987 | A |
4666537 | Dienes | May 1987 | A |
4670069 | Debbaut et al. | Jun 1987 | A |
4670980 | Charlebois et al. | Jun 1987 | A |
4678866 | Charlebois | Jul 1987 | A |
4684764 | Luzzi et al. | Aug 1987 | A |
4701574 | Shimirak et al. | Oct 1987 | A |
4725035 | Charlebois et al. | Feb 1988 | A |
4732628 | Dienes | Mar 1988 | A |
4747020 | Brickley et al. | May 1988 | A |
4761052 | Buekers et al. | Aug 1988 | A |
4764232 | Hunter | Aug 1988 | A |
4818824 | Dixit et al. | Apr 1989 | A |
4822434 | Sawaki et al. | Apr 1989 | A |
4875952 | Mullin et al. | Oct 1989 | A |
4884863 | Throckmorton | Dec 1989 | A |
4913512 | Anderton | Apr 1990 | A |
4961623 | Midkiff et al. | Oct 1990 | A |
4963698 | Chang et al. | Oct 1990 | A |
5004315 | Miyazaki | Apr 1991 | A |
5042901 | Merriken et al. | Aug 1991 | A |
5046811 | Jung et al. | Sep 1991 | A |
5054868 | Hoban et al. | Oct 1991 | A |
5066095 | Dekeyser et al. | Nov 1991 | A |
5074808 | Beamenderfer et al. | Dec 1991 | A |
5097529 | Cobb et al. | Mar 1992 | A |
5099088 | Usami et al. | Mar 1992 | A |
5115105 | Gallusser et al. | May 1992 | A |
5121458 | Nilsson et al. | Jun 1992 | A |
5125060 | Edmundson | Jun 1992 | A |
5185544 | Takada | Feb 1993 | A |
5194692 | Gallusser et al. | Mar 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5215930 | Lee et al. | Jun 1993 | A |
5217808 | Cobb | Jun 1993 | A |
5241611 | Gould | Aug 1993 | A |
5245151 | Chamberlain et al. | Sep 1993 | A |
5335408 | Cobb | Aug 1994 | A |
5347089 | Barrat et al. | Sep 1994 | A |
5353367 | Czosnowski et al. | Oct 1994 | A |
5376196 | Grajewski et al. | Dec 1994 | A |
5378853 | Clouet et al. | Jan 1995 | A |
5394502 | Caron | Feb 1995 | A |
5402515 | Vidacovich et al. | Mar 1995 | A |
5410105 | Tahara et al. | Apr 1995 | A |
RE34955 | Anton et al. | May 1995 | E |
5420958 | Henson et al. | May 1995 | A |
5440665 | Ray et al. | Aug 1995 | A |
5442726 | Howard et al. | Aug 1995 | A |
5450517 | Essert | Sep 1995 | A |
5491766 | Huynh et al. | Feb 1996 | A |
5509202 | Abdow | Apr 1996 | A |
5517592 | Grajewski et al. | May 1996 | A |
5528718 | Ray et al. | Jun 1996 | A |
5657413 | Ray et al. | Aug 1997 | A |
5666453 | Dannenmann | Sep 1997 | A |
5684911 | Burgett | Nov 1997 | A |
5696864 | Smith et al. | Dec 1997 | A |
5734776 | Puetz | Mar 1998 | A |
5767448 | Dong | Jun 1998 | A |
5778122 | Giebel et al. | Jul 1998 | A |
5823646 | Arizpe et al. | Oct 1998 | A |
5825963 | Burgett | Oct 1998 | A |
5892870 | Fingler et al. | Apr 1999 | A |
5945633 | Ott et al. | Aug 1999 | A |
5969294 | Eberle et al. | Oct 1999 | A |
5997186 | Huynh et al. | Dec 1999 | A |
RE36592 | Giebel et al. | Feb 2000 | E |
6104846 | Hodgson et al. | Aug 2000 | A |
RE37028 | Cooke et al. | Jan 2001 | E |
6181861 | Wenski et al. | Jan 2001 | B1 |
6255584 | Renaud | Jul 2001 | B1 |
6376774 | Oh et al. | Apr 2002 | B1 |
6407338 | Smith | Jun 2002 | B1 |
6466725 | Battey et al. | Oct 2002 | B2 |
6493500 | Oh et al. | Dec 2002 | B1 |
6539160 | Battey et al. | Mar 2003 | B2 |
6579014 | Melton et al. | Jun 2003 | B2 |
6619697 | Griffioen et al. | Sep 2003 | B2 |
6621975 | Laporte et al. | Sep 2003 | B2 |
6648520 | McDonald et al. | Nov 2003 | B2 |
6655016 | Renaud | Dec 2003 | B2 |
6668127 | Mahony | Dec 2003 | B1 |
6706968 | Yaworski et al. | Mar 2004 | B2 |
6764220 | Griffiths et al. | Jul 2004 | B2 |
6810194 | Griffiths et al. | Oct 2004 | B2 |
6819842 | Vogel et al. | Nov 2004 | B1 |
6856748 | Elkins, II et al. | Feb 2005 | B1 |
6880219 | Griffioen et al. | Apr 2005 | B2 |
7006739 | Elkins, II et al. | Feb 2006 | B2 |
7016592 | Elkins, II et al. | Mar 2006 | B2 |
7088893 | Cooke et al. | Aug 2006 | B2 |
7090407 | Melton et al. | Aug 2006 | B2 |
7113679 | Melton et al. | Sep 2006 | B2 |
7127143 | Elkins, II et al. | Oct 2006 | B2 |
7155093 | Elkins, II et al. | Dec 2006 | B2 |
7184633 | Cooke et al. | Feb 2007 | B2 |
20040074852 | Knudsen et al. | Apr 2004 | A1 |
20040247265 | Takano et al. | Dec 2004 | A1 |
20050069275 | Brants et al. | Mar 2005 | A1 |
20050175308 | Elkins et al. | Aug 2005 | A1 |
20050259928 | Elkins et al. | Nov 2005 | A1 |
20050259930 | Elkins, II et al. | Nov 2005 | A1 |
20050276552 | Cooke et al. | Dec 2005 | A1 |
20060056782 | Elkins, II et al. | Mar 2006 | A1 |
20060115220 | Elkins, II et al. | Jun 2006 | A1 |
20060193573 | Greenwood et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
35 37 684 | Apr 1987 | DE |
0 115 725 | Aug 1984 | EP |
1 361 465 | Nov 2003 | EP |
58-105114 | Jun 1983 | JP |
60-169813 | Sep 1985 | JP |
60-169815 | Sep 1985 | JP |
61-27510 | Feb 1986 | JP |
61-190305 | Aug 1986 | JP |
61-220536 | Sep 1986 | JP |
62-54204 | Mar 1987 | JP |
62-59906 | Mar 1987 | JP |
63-136007 | Jun 1988 | JP |
63-180915 | Jul 1988 | JP |
63-287916 | Nov 1988 | JP |
63-310317 | Dec 1988 | JP |
1-38828 | May 1989 | JP |
2001-116968 | Apr 2001 | JP |
WO 2005119322 | Dec 2005 | WO |
WO 2006044080 | Apr 2006 | WO |