Tubular actuator and method

Information

  • Patent Grant
  • 8418769
  • Patent Number
    8,418,769
  • Date Filed
    Friday, September 25, 2009
    15 years ago
  • Date Issued
    Tuesday, April 16, 2013
    11 years ago
Abstract
A tubular actuator includes, a tubular, a support member disposed at the tubular, and a restrictor configured to pass a runnable member when unsupported by the support member and to prevent passage of the runnable member when supported by the support member. The restrictor is movable relative to the support member from an unsupported position to a supported position in response to pressure applied against the runnable member engaged with the restrictor according to a pressure versus time profile.
Description
BACKGROUND

In industries concerned with earth formation boreholes, such as hydrocarbon recovery and gas sequestration, for example, it is not uncommon for various operations to utilize a temporary or permanent plugging device. Sometimes plugging is desirable at a first location, and subsequently at a second location. Moreover, additional plugging locations may also be desired and the plugging can be sequential for the locations or otherwise. Systems employing droppable members, such as balls, for example, are typically used for just such a purpose. The ball is dropped to a ball seat positioned at the desired location within the borehole thereby creating the desired plug.


In applications where the first location is further from surface than the second location, it is common to employ seats with sequentially smaller diameters at locations further from the surface. Dropping balls having sequentially larger diameters allows the ball seat furthest from surface to be plugged first (by a ball whose diameter is complementary to that seat), followed by the ball seat second furthest from surface (by a ball whose diameter is complementary to that seat) and so on.


The foregoing system, however, creates increasingly restrictive dimensions within the borehole that can negatively impact flow therethrough as well as limit the size of tools that can be run into the borehole. Systems and methods that allow operators to plug boreholes at multiple locations without the drawbacks mentioned would be well received in the art.


BRIEF DESCRIPTION

Disclosed herein is a tubular actuator. The tubular actuator includes, a tubular, a support member disposed at the tubular, and a restrictor configured to pass a runnable member when unsupported by the support member and to prevent passage of the runnable member when supported by the support member. The restrictor is movable relative to the support member from an unsupported position to a supported position in response to pressure applied against the runnable member engaged with the restrictor according to a pressure versus time profile.


Further disclosed herein is a method of selectively actuating a tubular actuator. The method includes, running a runnable member within a tubular, engaging a restrictor disposed at the tubular with the runnable member, and doing one of the following. Pressuring up against the engaged runnable member to pressure exceeding a threshold pressure before expiration of a selected period of time and passing the runnable member past the restrictor. Or pressuring up against the engaged runnable member to pressure equal to or less than the threshold pressure for at least the selected period of time thereby moving the restrictor to a supported position and preventing passage of the runnable member.


Further disclosed herein is a tubular actuator. The tubular actuator includes, a restrictor positionable within a tubular relative to a support member between an unsupported position where passage of a runnable member is facilitated, and a supported position where passage of the runnable member is prevented.





BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:



FIG. 1 depicts a cross sectional view of a tubular actuator disclosed herein in a run in position;



FIG. 2 depicts a cross sectional view of the tubular actuator of FIG. 1 in a position that allows passage of a runnable member;



FIG. 3 depicts a cross sectional view of the tubular actuator of FIG. 1 in an actuated position;



FIG. 4 depicts a cross sectional view of the tubular actuator of FIG. 1 in an actuated position with the seat in a defeatable position having passed a runnable member therethrough;



FIG. 5 depicts a cross sectional view of an alternate tubular actuator disclosed herein in a position passable of a runnable member;



FIG. 6 depicts a cross sectional view of the tubular actuator of FIG. 5 in a position with a runnable member seated thereat;



FIG. 7 depicts a cross sectional view of the tubular actuator of FIG. 5 in a position wherein the seat is supported;



FIG. 8 depicts a cross sectional view of the tubular actuator of FIG. 5 in an actuated position;



FIG. 9 depicts a cross sectional view of the tubular actuator of FIG. 5 in a position where the sleeve has reset relative to the body;



FIG. 10 depicts a partial cross sectional view of an alternate embodiment of a tubular actuator disclosed herein in a position wherein a runnable member is seated thereon;



FIG. 11 depicts a partial cross sectional view of the tubular actuator of FIG. 10 in a defeatable position about to pass a runnable member thereby; and



FIG. 12 depicts a partial cross sectional view of the tubular actuator of FIG. 10 in a position with the runnable member seated and the seat being supported.





DETAILED DESCRIPTION

A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.


Embodiments of a tubular actuator disclosed herein allow an operator to selectively actuate or selectively pass each of one or more of the tubular actuators disposed within a tubular. The operator runs a runnable member to engage with the tubular actuator(s) and then either pressures up to above a latch pressure to perform an actuation process or to below the latch pressure to allow the runnable member to pass through the tubular actuator thereby avoiding performance of an actuation.


Referring to FIG. 1, an embodiment of the tubular actuator disclosed herein is illustrated generally at 10. The tubular actuator 10 includes, a restrictor 14 having a body 18, which is movable within a tubular 22 during actuation, and a seat 26 that is sealingly engagably receptive of a runnable member 28, illustrated herein as a ball. The seat 26 is selectively defeatable such that the ball 28 is able to pass as will be explained in detail below. The seat 26 in this embodiment is attached to an end 30 of a sleeve 34. The sleeve 34 is slidably sealingly engaged with the body 18 by seals 38, illustrated herein as o-rings, at both the end 30 and an opposing end 42 thereby creating a chamber 46, defined by the annular space between the body 18 and the sleeve 34 and bound at the ends 30, 42 by the two o-rings 38, that is fluidically isolated. The chamber 46 is divided into two sub-chambers 46A and 46B by a shoulder 50 extending from the body 18 and slidably sealingly engaged with the sleeve 34. One or more ports 54 in the shoulder 50 fluidically connect the sub-chambers 46A and 46B to one another. As such, movement of the sleeve 34 relative to the body 18 causes fluid, such as hydraulic oil, for example, housed within the chamber 46 to be pumped from one of the sub-chambers 46A, 46B to the other of the sub-chambers 46A, 46B through the port(s) 54. The foregoing structure allows an operator to control a time for the sleeve 34 to move through a full stroke by adjustment of the size and number of the port(s) 54 used. Regardless of whether the sleeve 34 has been fully stroked, a reduction in pressure can allow the sleeve 34 to move back to its original position under the influence of a biasing member 56, illustrated herein as a compression spring, compressingly engaged between the sleeve 34 and the body 18.


Referring to FIG. 2, the seat 26 becomes defeatable once the sleeve 34 has fully stroked relative to the body 18. In this embodiment the seat 26 includes a plurality of seat sections 58 that are radially expandable to allow passage of the ball 28 when the seat sections 58 are not supported by an inner radial surface 62 of the body 18. Since the seat sections 58 are radially supported by the inner radial surface 62 at all relative locations of the sleeve 34 and body 18 other than the fully stroked position (wherein the seat sections 58 are able to move into an inner recess 66), it is only when the sleeve 34 is in the fully stroked position, as illustrated in FIG. 2, that the ball 28 is allowed to pass. Moving the sleeve 34 to the fully stroked position can be done by applying pressure to a ball 28 seated against the seat 26, thereby urging the sleeve 34 to move.


Movement of the sleeve 34 relative to the body 18, however, is prevented if pressure applied to the seated ball 28 exceeds a latch pressure defined as the pressure at which latching occurs between the sleeve 34, (or the seat 26 itself) and the body 18. This latching can be through an increase in frictional engagement between the sleeve 34, the seat 26, or both, and the inner radial surface 62 of the body 18 for example. Alternate latching engagement mechanisms are contemplated but not disclosed in further detail herein.


Referring to FIG. 3, when pressure exceeding the latch pressure is supplied prior to the sleeve 34 completing a full stroke, the sleeve 34 becomes longitudinally fixed relative to the body 18. Once the sleeve 34 is latched to the body 18, all of the forces generated by pressure against the seated ball 28 are transferred through the body 18 to the tubular 22. This force can be used to move the body 18 relative to the tubular 22 in an actuating event. For example, the body 18 may block one or more ports 70 in the tubular 22 while in its original position (FIGS. 1 and 2), and then effectively open the port(s) 70 by aligning them with one or more ports 74 in the body 18 after the body 18 has moved (FIGS. 3 and 4). Such an actuation can be used to provide selective access to a formation outside the tubular 22 for fracturing, for example, in a downhole hydrocarbon or sequestration application. Additionally, one or more releasable members 78, shown herein as shear screws, may longitudinally attach the body 18 to the tubular 22 until a selectable load, such as by a threshold pressure, is applied therebetween, to prevent inadvertent actuation of the tubular actuator 10.


Referring to FIG. 4, the ball 28 may still be allowed to pass after the tubular actuator 10 has been actuated. To do so, one would simply reduce the pressure after the actuation is completed to pressure below the latch pressure. In so doing the sleeve 34 becomes unlatched from the body 18 and permits the sleeve 34 to move relative to the body 18. After full stroking of the sleeve 34 has occurred the seat sections 58 can expand radially into the inner recess 66 and allow the ball 28 to pass therethrough, as is illustrated in FIG. 4. After passage of the ball 28 the biasing member 56 can return the sleeve 34 to its original position with respect to the body 18, thereby being reset to a position engagable by another of the balls 28.


Positioning a plurality of the tubular actuators 10 along the tubular 22 allows an operator to selectively actuate any one of the plurality of actuators 10 regardless of the number of actuators 10 between it and the origin of entry for the balls 28.


Referring to FIGS. 5-9, an alternate embodiment of a tubular actuator disclosed herein is illustrated generally at 110. The tubular actuator 110 includes, a restrictor 114 having a body 118, which is movable within a tubular 122, and at least one support member 130, with multiple support members 130 being illustrated in this embodiment. The restrictor 114 also has a seat 126 that is sealingly engagably receptive to a runnable member 128, illustrated herein as an extrudable ball. The seat 126 is attached to an end of a sleeve 134 and is movable within the body 118. The actuator 110 is similar to the actuator 10 in that chambers 46A and 46B are fluidically connected to each other by port(s) 54 that control a rate at which fluid is able to flow between the two chambers 46A and 46B. This rate of fluid flow controls a rate of movement of the sleeve 134 with respect to the body 118. Unlike the actuator 10, however, wherein passage of the runnable member 28 was prevented until the sleeve 34 had been fully stroked, in the actuator 110 the runnable member 128 is only allowed to pass the restrictor 114 prior to full stroking of the sleeve 34. This passage is due to extrusion of the runnable member 128 by the seat 126 if pressure exceeding a threshold pressure is applied thereagainst prior to repositioning of the support members 130.


Referring to FIG. 6, the sleeve 134 as illustrated is in a fully stroked position. As such, ends 138 of seat 126 have contacted cams 142 on each of the support members 130 causing the support members 130 to rotate to the support position shown in FIG. 7 thereby presenting support surfaces 146 to the runnable member 128. Consequently, further increases in pressure against the engaged runnable member 128 will urge the body 118 to move relative to the tubular 122 (to the position shown in FIG. 8), instead of extruding the runnable member 128 past the restrictor 114. The foregoing structure allows an operator, by selectively controlling a pressure versus time profile, to selectively pass the runnable member 128 beyond the restrictor 114 or to selectively move the restrictor 114 to a supported position to thereby allow actuational movement of the body 118 relative to the tubular 122.


The actuator 110 is further configured to allow passage of the runnable member 128 even after the support members 130 have rotated and supported the runnable member 128. To do so requires the pressure against the runnable member 128 to be decreased to a level below a biasing force of the biasing member 56 that, as described with reference to FIG. 4, biases the sleeve 134 to return to its original position with respect to the body 118. Doing so in this embodiment positions the restrictor 114 in a position to be passable or actuatable through engagement with another of the runnable members 128.


The embodiment of FIGS. 5-9 is also configured to open ports 150 in the tubular 122 by aligning ports 154 in the body 118, thereby providing fluidic communication between an inside and an outside of the tubular 122. Such fluidic communication is useful for production of hydrocarbons, for example, in an application directed to hydrocarbon recovery. Additionally, such fluidic communication allows for fracturing of a downhole formation through pressurization of the formation through the open ports 150, 154.


Referring to FIGS. 10-12, an alternate embodiment of a tubular actuator is illustrated generally at 210. The actuator 210 is similar to the actuator 110 in that a runnable member 228 is passable thereby in response to a threshold pressure being provided against the runnable member 228 prior to expiration of a time delay, and whereas, increases in pressure beyond the threshold pressure only after the time delay has expired will not result in passage of the runnable member 228 thereby. The actuator 210 differs from the actuator 110 in that the runnable member 228 does not deform and extrude through a restrictor 214, as does the runnable member 128 by the restrictor 114. Instead, a seat 226 of the restrictor 214 repositions, or deforms as is illustrated in this embodiment, to allow passage of the runnable member 228 (the runnable member 228 remaining in a nondeformed condition).


Structurally, the seat 226 of the restrictor 214 is cantilevered on fingers 232 that can flex radially outwardly when loads due to pressure exceeding a threshold pressure are applied against the runnable member 228. Additionally, the seat 226 can be mounted on a sleeve with fluidic chambers to control movement of the seat 226 relative to a tubular 222 as is done in the above embodiments, additionally, other means of damping movement can be employed. A support member 230 positioned downstream of the restrictor 214, as defined by the direction of pressure supplied against the runnable member 228, is configured to support the fingers 232 from outward radial expansion if the restrictor 214 moves into overlapping engagement with the support member 230 prior to passage of the runnable member 228 by the restrictor 214. Support of the fingers 232 by the support member 230 prevent radial outward deflection of the fingers 232 that is necessary to pass the runnable member 228 by the restrictor 214. As such, an operator can selectively pass the runnable member 228 by the restrictor 214 or have the runnable member 228 actuationally engage with the restrictor 214 by selectively controlling a pressure versus time profile of the pressure applied to the runnable member 228 once seated on the seat 226.


Actuation of the actuator 210 can be accomplished by pressuring up to pressure greater than the threshold pressure against the runnable member 228 seated against the seat 226 after the restrictor 214 has moved into supporting engagement with the support member 230. One or more releasable members 236, illustrated herein as shear screws, can releasable attach the actuator 210 to the tubular 222 until a sufficient load is applied to release the releasable members 236, thereby allowing the actuator 210 to actuate relative to the tubular 222.


While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims
  • 1. A tubular actuator comprising: a tubular;a support member disposed at the tubular; anda restrictor being configured to pass a runnable member therethru when unsupported by the support member and to prevent passage of the runnable member when supported by the support member, the restrictor being movable relative to the support member from an unsupported position to a supported position in response to pressure being applied against the runnable member engaged with the restrictor according to a pressure versus time profile prior to passage of the runnable member by the restrictor.
  • 2. The tubular actuating of claim 1, wherein a pressure versus time profile including pressure remaining at or below a threshold pressure for a duration of time causes the restrictor to move to the supportive position.
  • 3. The tubular actuating of claim 2, wherein the duration of time is selectable.
  • 4. The tubular actuating of claim 2, wherein duration of time is defined by fluid flow through one or more ports.
  • 5. The tubular actuating of claim 2, wherein the duration of time is controlled by damped movement of the restrictor relative to the support member.
  • 6. The tubular actuating of claim 1, wherein the restrictor in the supportive position prevents extrusion of the runnable member thereby.
  • 7. The tubular actuating of claim 1, wherein in the supportive position the support member prevents passage of members even smaller than the runnable member.
  • 8. The tubular actuating of claim 1, wherein a pressure versus time profile including pressure exceeding a pressure threshold before expiration of a duration of time allows the runnable member to extrude past the restrictor.
  • 9. The tubular actuating of claim 1, wherein a pressure versus time profile including pressure exceeding a pressure threshold before expiration of a duration of time allows the restrictor to expand thereby allowing passage of the runnable member.
  • 10. The tubular actuating of claim 1, wherein the restrictor includes a plurality of movable members.
  • 11. A method of selectively actuating a tubular actuator, comprising: running a runnable member within a tubular;engaging a restrictor disposed at the tubular with the runnable member;passing the runnable member by the restrictor if pressure thereagainst exceeds a threshold pressure before moving the restrictor a selected dimension; andpressuring up against the engaged runnable member to pressure equal to or less than the threshold pressure for at least a selected period of time thereby moving the restrictor to a supported position and preventing passage of the runnable member even if pressure exceeds the threshold pressure.
  • 12. The method of selectively actuating the tubular actuator of claim 11, further comprising extruding the runnable member by the restrictor.
  • 13. The method of selectively actuating the tubular actuator of claim 11, further comprising deforming the restrictor and passing the runnable member thereby.
  • 14. The method of selectively actuating the tubular actuator of claim 11, wherein the moving the restrictor is in a downstream direction.
  • 15. The method of selectively actuating the tubular actuator of claim 14, further comprising damping the moving of the restrictor.
  • 16. The method of selectively actuating the tubular actuator of claim 15, further comprising defining the period of time with the damping of the moving of the restrictor.
  • 17. The method of selectively actuating the tubular actuator of claim 15, wherein the damping the moving of the restrictor includes pumping fluid through one or more ports.
  • 18. The method of selectively actuating the tubular actuator of claim 11, further comprising moving a support structure to a position more restrictive than the restrictor.
  • 19. The method of selectively actuating the tubular actuator of claim 11, further comprising reducing pressure against the engaged runnable member and moving the restrictor to an unsupported position.
  • 20. The method of selectively actuating the tubular actuator of claim 11, wherein the preventing passage of the runnable member is at pressures even greater than the threshold pressure.
  • 21. A tubular actuator comprising a restrictor positionable within a tubular relative to a support member between an initially unsupported position where passage of a runnable member is facilitated, and a supported position where passage of the runnable member is prevented, the restrictor being movable between the initially unsupported position and the supported position in response to pressure applied against the runnable member seated at the restrictor prior to passage of the runnable member by the restrictor.
  • 22. The tubular actuator of claim 21 wherein the position of the restrictor is dictated by pressure relative to a threshold of both pressure and time where the pressure is acting on the runnable member after engagement with the restrictor.
US Referenced Citations (136)
Number Name Date Kind
1883071 Stone Dec 1928 A
2769454 Bletcher et al. Nov 1956 A
2812717 Brown Nov 1957 A
2822757 Colberly Feb 1958 A
2973006 Nelson Feb 1961 A
3007527 Nelson Nov 1961 A
3013612 Angel Dec 1961 A
3148731 Holden Sep 1964 A
3211232 Grimmer Oct 1965 A
3263752 Conrad Aug 1966 A
3358771 Berryman Dec 1967 A
3510103 Carsello May 1970 A
3566964 Livingston Mar 1971 A
3667505 Radig Jun 1972 A
3703104 Tamplen Nov 1972 A
3727635 Todd Apr 1973 A
3797255 Kammerer, Jr. et al. Mar 1974 A
3901315 Parker et al. Aug 1975 A
3954138 Miffre May 1976 A
3997003 Adkins Dec 1976 A
4067358 Streich Jan 1978 A
4160478 Calhoun et al. Jul 1979 A
4176717 Hix Dec 1979 A
4190239 Schwankhart Feb 1980 A
4246968 Jessup et al. Jan 1981 A
4260017 Nelson et al. Apr 1981 A
4291722 Churchman Sep 1981 A
4292988 Montgomery Oct 1981 A
4355685 Beck Oct 1982 A
4390065 Richardson Jun 1983 A
4448216 Speegle et al. May 1984 A
4474241 Freeman Oct 1984 A
4478279 Puntar et al. Oct 1984 A
4537383 Fredd Aug 1985 A
4554981 Davies Nov 1985 A
4566541 Moussy et al. Jan 1986 A
4576234 Upchurch Mar 1986 A
4583593 Zunkel et al. Apr 1986 A
4669538 Szarka Jun 1987 A
4711326 Baugh et al. Dec 1987 A
4714116 Brunner Dec 1987 A
4729432 Helms Mar 1988 A
4823882 Stokley et al. Apr 1989 A
4826135 Mielke May 1989 A
4856591 Donovan et al. Aug 1989 A
4893678 Stokley et al. Jan 1990 A
4944379 Haaser Jul 1990 A
4979561 Szarka Dec 1990 A
5029643 Winslow et al. Jul 1991 A
5056599 Comeaux et al. Oct 1991 A
5230390 Zastresek et al. Jul 1993 A
5244044 Henderson Sep 1993 A
5297580 Thurman Mar 1994 A
5305837 Johns et al. Apr 1994 A
5335727 Cornette et al. Aug 1994 A
5343946 Morrill Sep 1994 A
5529126 Edwards Jun 1996 A
5609178 Hennig et al. Mar 1997 A
5704393 Connell et al. Jan 1998 A
5762142 Connell et al. Jun 1998 A
5775421 Duhon et al. Jul 1998 A
5775428 Davis et al. Jul 1998 A
5813483 Latham et al. Sep 1998 A
5960881 Allamon et al. Oct 1999 A
6050340 Scott Apr 2000 A
6053250 Echols Apr 2000 A
6079496 Hirth Jun 2000 A
6102060 Howlett et al. Aug 2000 A
6155350 Melenyzer Dec 2000 A
6173795 McGarian et al. Jan 2001 B1
6220350 Brothers et al. Apr 2001 B1
6227298 Patel May 2001 B1
6253861 Carmichael et al. Jul 2001 B1
6293517 Cunningham Sep 2001 B1
6378609 Oneal et al. Apr 2002 B1
6474412 Hamilton et al. Nov 2002 B2
6530574 Bailey et al. Mar 2003 B1
6547007 Szarka et al. Apr 2003 B2
6634428 Krauss et al. Oct 2003 B2
6644412 Bode et al. Nov 2003 B2
6666273 Laurel Dec 2003 B2
6668933 Kent Dec 2003 B2
6681860 Yokley et al. Jan 2004 B1
6712145 Allamon Mar 2004 B2
6712415 Darbishire et al. Mar 2004 B1
6834726 Giroux et al. Dec 2004 B2
6866100 Gudmestad et al. Mar 2005 B2
6896049 Moyes May 2005 B2
6948561 Myron et al. Sep 2005 B2
6983795 Zuklic et al. Jan 2006 B2
7150326 Bishop et al. Dec 2006 B2
7322408 Howlett Jan 2008 B2
7325617 Murray Feb 2008 B2
7337847 McGarian et al. Mar 2008 B2
7350578 Szarka et al. Apr 2008 B2
7377321 Rytlewski May 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7416029 Telfer et al. Aug 2008 B2
7467664 Cochran et al. Dec 2008 B2
7503390 Gomez Mar 2009 B2
7503392 King et al. Mar 2009 B2
7520336 Mondelli et al. Apr 2009 B2
7730953 Casciaro Jun 2010 B2
7832472 Themig Nov 2010 B2
20010007284 French et al. Jul 2001 A1
20040007365 Hill et al. Jan 2004 A1
20050061372 McGrath et al. Mar 2005 A1
20050072572 Churchill Apr 2005 A1
20050126638 Gilbert Jun 2005 A1
20050205264 Starr et al. Sep 2005 A1
20060124310 Lopez De Cardenas et al. Jun 2006 A1
20060169463 Howlett Aug 2006 A1
20060175092 Mashburn Aug 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060243455 Telfer et al. Nov 2006 A1
20070007007 Themig et al. Jan 2007 A1
20070012438 Hassel-Sorensen Jan 2007 A1
20070023087 Krebs et al. Feb 2007 A1
20070095538 Szarka et al. May 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20080066924 Xu Mar 2008 A1
20080093080 Palmer et al. Apr 2008 A1
20080190620 Posevina et al. Aug 2008 A1
20080217025 Ruddock et al. Sep 2008 A1
20080308282 Standridge et al. Dec 2008 A1
20090032255 Surjaatmadja et al. Feb 2009 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044955 King et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090056952 Churchill Mar 2009 A1
20090107680 Surjaatmadja Apr 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090308588 Howell et al. Dec 2009 A1
20100294514 Crow et al. Nov 2010 A1
20110108284 Flores et al. May 2011 A1
20110180274 Wang et al. Jul 2011 A1
Foreign Referenced Citations (3)
Number Date Country
0427422 May 1991 EP
2281924 Mar 1995 GB
0015943 Mar 2000 WO
Non-Patent Literature Citations (40)
Entry
International Search Report and Written Opinion of the International Searching Authority; PCT/US2010/044378; Mailed Mar. 17, 2011.
International Search Report; PCT/US2010/033737; Korean Intellectual Property Office; Mailed Jan. 24, 2011.
International Search Report; Date of Mailing Jan. 24, 2011; International Appln No. PCT/US2010/034736; 3 Pages.
International Search Report; Date of Mailing Jan. 24, 2011; Internatiaonal Appln. No. PCT/US2010/034752; 3 Pages.
Nternational Search Report and Written Opinion; Date of Mailing Feb. 11, 2011; International Appln No. PCT/US2010/041049; International Search Report 5 Pages and Written Opinion 3 Pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/044856; Mailed Apr. 15, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/044383; Mailed Apr. 15, 2011.
International Search Report; PCT/US2010/044399; International Searching Authority KIPO; Mailed Mar. 21, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/054487; International Searching Authority; KIPO; Mailed Jun. 3, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/049810; International Searching Authority KIPO; Mailed Apr. 25, 2011.
Response to Office Action dated Oct. 15, 2008, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Jun. 25, 2009, in U.S. Appl. No. 11/891,714, USPTO, U.S.A.
Office Action dated Jun. 19, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Response to Restriction Requirement dated Apr. 22, 2009 in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Apr. 9, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Notice of Allowance & Fees Due and Notice of Allowability dated Jan. 5, 2009, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Jul. 16, 2008 in U.S. Appl. No. 11/891,713 U.S. Patent and Trademark Office, U.S.A.
International Search Report, Feb. 11, 2009 pp. 1-3, PCT/US2008/072732, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072732, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-3, PCT/US2008/072732, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office.
International Search Report, Feb. 11, 2009, pp. 1-3, PCT/US2008/072734, Korean Intellectual Property Office.
International Search Report, Feb. 11, 2009, pp. 1-3, PCT/US2008/072735, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Jan. 19, 2009, pp. 1-4, PCT/US2008/072470, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office.
International Search Report, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office.
Baker Hughes, Baker Oil Tools, Conventional Fishing Technical Unit; Pump Out Sub Product Family No. H14061, Jun. 7, 2005, 1 page.
Ross, C. M., et al., “Current Materials and Devices for Control of Fluid Loss,” SPE 54323, Apr. 1999, pp. 1-16.
Hoffman, C.R., “One-Trip Sand-Control/Liner Hangar/ Big-Bore Completion System,” SPE 101086, Sep. 2006, pp. 1-10.
G.L. Rytlewski, A Study of Fracture Initiation Pressures in Cemented Cased-Hole Wells Without Perforations, May 15, 2006, pp. 1-10, SPE 100572, Society of Petroleum Engineers, U.S.A.
Boscan, J., et al., “Successful Well Testing Operations in High-Pressure/High-Temperature Encironment; Case Histories,” SPE 84096, Oct. 2003, pp. 1-15.
Brad Musgrove, Multi-Layer Fracturing Solution Treat and Produce Completions, Nov. 12, 2007, pp. 1-23, Schlumberger, U.S.A.
RFID Keystone Module, RFID & Intelligent Products, Petrowell retrieved online on May 27, 2009 from: http://www.petrowell.co.uk/index2.php?option=com—docman&task=doc—view&gid=15&Itemid=26.
StageFRAC Maximize Reservoir Drainage, 2007, pp. 1-2, Schlumberger, U.S.A.
TAP Completion System, Schlumberger, 4 pages, Dec. 2007.
International Search Report and Written Opinion; Date of Mailing Aug. 29, 2011; International Application No. PCT/US2011/022523; International Filing Date Jan. 26, 2011; Korean Intellectual Property Office; International Search Report 5 pages; Written Opinion 3 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/041663; Korean Intellectual Property Office; Mailed Dec. 14, 2011; 8 pages.
Related Publications (1)
Number Date Country
20110073321 A1 Mar 2011 US