Tubular system operators are always receptive to new methods and devices to permit actuation of tubular tools such as those in industries concerned with earth formation boreholes, such as hydrocarbon recovery and gas sequestration, for example. It is not uncommon for various operations in these industries to utilize a temporary or permanent plugging device against which to build pressure to cause an actuation.
Sometimes actuating is desirable at a first location, and subsequently at a second location. Moreover, additional actuating locations may also be desired and the actuation can be sequential for the locations or otherwise. Systems employing droppable members, such as balls, for example, are typically used for just such purpose. The ball is dropped to a ball seat positioned at the desired location within the borehole thereby creating the desired plug to facilitate the actuation.
In applications where the first location is further from surface than the second location, it is common to employ seats with sequentially smaller diameters at locations further from the surface. Dropping balls having sequentially larger diameters allows the ball seat furthest from surface to be plugged first (by a ball whose diameter is complementary to that seat), followed by the ball seat second furthest from surface (by a ball whose diameter is complementary to that seat) and so on.
The foregoing system, however, creates increasingly restrictive dimensions within the borehole that can negatively impact flow therethrough as well as limit the size of tools that can be run into the borehole. Systems and methods that allow operators to increase the number of actuatable locations within a borehole without the drawbacks mentioned would be well received in the art.
Disclosed herein is a tubular actuating system. The system includes, a tubular, a plurality of same plugs runnable within the tubular, an alterable actuator disposed at the tubular that is alterable in response to passage of a first of the plurality of same plugs run into contact therewith, a second of the plurality of same plugs is seatingly engagable with the alterable actuator run thereagainst when in an altered condition such that pressure built up against the second of the plurality of same plugs causes actuational movement of the alterable actuator, and a flapper seat movably disposed at the alterable actuator between at least a first position defined by the alterable actuator in an unaltered position and a second position defined by the alterable actuator in an altered position.
Further disclosed herein is a method of actuating a tubular actuator. The method includes, running a first plug within a tubular, engaging an actuator with the first plug, altering the actuator with the first plug, passing the actuator with the first plug, running a second plug that is dimensioned substantially the same as the first plug within the tubular, seatingly engaging the actuator with the second plug, pressuring up against the second plug seatingly engaged with the actuator, and moving the actuator.
Further disclosed herein is a tubular actuator. The tubular actuator includes, a body, and at least one seat movably disposed at the body configured to be moved during passage of a first engagable member thereby to be subsequently seatingly engagable with a subsequent engagable member, and the subsequent engagable member is substantially the same as the first engagable member.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Embodiments of tubular actuating systems disclosed herein include actuators disposed in a tubular that are altered during passage of a first plug run thereby such that the actuators are seatingly engagable with a second plug of the same dimensions run thereagainst.
Referring to
A flapper 24, is biased from a first position (
Once the flapper 24 is in the second position as illustrated in
When the second ball 22B is seatingly engaged in the port 64 of the flapper 24, pressure built up against the second ball 22B, the flapper 24 and the sleeve 34 can create longitudinal forces adequate to shear the shear screws 38. After the shear screws 38 have sheared the sleeve 34 of the actuator 18 can be urged to move relative to the tubular 14 to actuate a tool (not shown). This actuation can be used to open ports (not shown) for example through the tubular 14 in a tubular valving application, for example.
Referring to
The restrictive portion 130 is configured to allow the restrictive portion 130 to expand radially outwardly when the support sleeve 126 is in the second position. A recess 134 in an inner wall 138 of the tubular 114 that longitudinally aligns with the restrictive portion 130 can facilitate the radial expansion. The radial expansion allows the plug 122A seatingly engaged with the restrictive portion 130 to pass therethrough. After the plug 122A has passed therethrough it is free to seatingly engage with a seat 142 of an alternate actuator 146, for example, to initiate actuation thereof.
The plug 122A is free to pass the flapper 124 when the flapper 124 is in the longitudinal orientation and seatingly engagable with a port 152 in the flapper 124 when the flapper 124 is in the radial orientation. As such, the support sleeve 126 of the actuator 118 is configured to be moved from the first position to the second position by the movable engagement of the first plug 122A with the restrictive portion 130 as described above. The recess 134 provides a stop for the restrictive portion 130 to engage to limit travel of the sleeve 126 to the second position. The movement of the support sleeve 126 allows the flapper 124 to move from the longitudinal orientation to the radial orientation. A biasing member, such as a torsional spring, not shown, for example, may facilitate such movement. Once the flapper 124 is in the radial orientation it is positioned to seatingly engage the second plug 122B when it is run thereagainst. Pressure built against the second plug 122B run against the flapper 124 can urge the flapper 124 and the support sleeve 126 of the actuator 118 to move thereby creating an actuational movement from the second position to a third position, for example, as shown in
The foregoing tubular actuating system 110 allows an operator to double the number of actuations possible with a single sized plug 122A, 122B. This is possible since the first plug 122A is able to pass the actuator 118, albeit altering the actuator 118 in the process, and functionally engage the alternate actuator 146, while the second plug 122B, that is dimensioned the same as the first plug 122A, is functionally engagable with the actuator 118.
A useful application of the tubular actuating system 110 disclosed herein is to increase the number of frac zones possible within a wellbore. By using the actuators 118 and 146 to open ports 154 and 150 in the tubular 114 respectively, the system 110 allows for both ports 150, 154 to be opened sequentially with the single sized plugs 122A, 122B.
Referring to
After the first ends 246 have moved beyond the support surface 254 they can be urged radially outwardly by the first plug 222A passing therethrough, thereby defeating the defeatable seat 250. The first plug 222A, after having passed through the actuator 218, can then be utilized downstream against another actuator seat (not shown) for example. The movement of the slides 220 relative to the sleeve 234 causes second ends 258 to collapse radially inwardly in response to at least one of pivoting action of the slides 220 about a fulcrum 262 in slidable contact with the sleeve 234, and ramping of a radial extension 266 of the slides 220 along a ramped surface 270 on the sleeve 234. Once the slides 220 are moved relative to the sleeve 234 the radial extensions 266 are supported from radial expansion by the support surface 274 thereby maintaining a seat 278 seatingly receptive of the second plug 222B run against the actuator 218. It should be noted that the slides 220 might also be made to flex in the fashion of a collet thereby allowing the second ends 258 to collapse radially inwardly during the formation of the seat 278.
Pressure can be built against the second plug 222B seated against the seat 278 until release members 282, illustrated herein as shear screws, that longitudinally fix the sleeve 234 to the tubular 214, release. Such release allows the sleeve 234 to move to a downstream position relative to the tubular 214 in an actuation motion as depicted in
The slides 220 can be reset to the first position relative to the sleeve 234, as shown in
Referring to
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
1883071 | Stone | Dec 1928 | A |
2769454 | Bletcher et al. | Nov 1956 | A |
2812717 | Brown | Nov 1957 | A |
2822757 | Colberly | Feb 1958 | A |
2973006 | Nelson | Feb 1961 | A |
3007527 | Nelson | Nov 1961 | A |
3013612 | Angel | Dec 1961 | A |
3148731 | Holden | Sep 1964 | A |
3211232 | Grimmer | Oct 1965 | A |
3263752 | Conrad | Aug 1966 | A |
3358771 | Berryman | Dec 1967 | A |
3510103 | Carsello | May 1970 | A |
3566964 | Livingston | Mar 1971 | A |
3667505 | Radig | Jun 1972 | A |
3703104 | Tamplen | Nov 1972 | A |
3727635 | Todd | Apr 1973 | A |
3797255 | Kammerer, Jr. et al. | Mar 1974 | A |
3901315 | Parker et al. | Aug 1975 | A |
3954138 | Miffre | May 1976 | A |
3997003 | Adkins | Dec 1976 | A |
4067358 | Streich | Jan 1978 | A |
4160478 | Calhoun et al. | Jul 1979 | A |
4176717 | Hix | Dec 1979 | A |
4190239 | Schwankhart | Feb 1980 | A |
4246968 | Jessup et al. | Jan 1981 | A |
4260017 | Nelson et al. | Apr 1981 | A |
4291722 | Churchman | Sep 1981 | A |
4292988 | Montgomery | Oct 1981 | A |
4355685 | Beck | Oct 1982 | A |
4390065 | Richardson | Jun 1983 | A |
4448216 | Speegle et al. | May 1984 | A |
4474241 | Freeman | Oct 1984 | A |
4478279 | Puntar et al. | Oct 1984 | A |
4537383 | Fredd | Aug 1985 | A |
4554981 | Davies | Nov 1985 | A |
4566541 | Moussy et al. | Jan 1986 | A |
4576234 | Upchurch | Mar 1986 | A |
4583593 | Zunkel et al. | Apr 1986 | A |
4669538 | Szarka | Jun 1987 | A |
4711326 | Baugh et al. | Dec 1987 | A |
4714116 | Brunner | Dec 1987 | A |
4729432 | Helms | Mar 1988 | A |
4823882 | Stokley et al. | Apr 1989 | A |
4826135 | Mielke | May 1989 | A |
1856591 | Donovan et al. | Aug 1989 | A |
4856591 | Donovan et al. | Aug 1989 | A |
4893678 | Stokley et al. | Jan 1990 | A |
4944379 | Haaser | Jul 1990 | A |
4979561 | Szarka | Dec 1990 | A |
5029643 | Winslow et al. | Jul 1991 | A |
5056599 | Comeaux et al. | Oct 1991 | A |
5230390 | Zastresek et al. | Jul 1993 | A |
5244044 | Henderson | Sep 1993 | A |
5297580 | Thurman | Mar 1994 | A |
5305837 | Johns et al. | Apr 1994 | A |
5335727 | Cornette et al. | Aug 1994 | A |
5343946 | Morrill | Sep 1994 | A |
5529126 | Edwards | Jun 1996 | A |
5609178 | Hennig et al. | Mar 1997 | A |
5704393 | Connell et al. | Jan 1998 | A |
5762142 | Connell et al. | Jun 1998 | A |
5775421 | Duhon et al. | Jul 1998 | A |
5775428 | Davis et al. | Jul 1998 | A |
5813483 | Latham et al. | Sep 1998 | A |
5960881 | Allamon et al. | Oct 1999 | A |
6050340 | Scott | Apr 2000 | A |
6053250 | Echols | Apr 2000 | A |
6079496 | Hirth | Jun 2000 | A |
6102060 | Howlett et al. | Aug 2000 | A |
6155350 | Melenyzer | Dec 2000 | A |
6173795 | McGarian et al. | Jan 2001 | B1 |
6220350 | Brothers et al. | Apr 2001 | B1 |
6227298 | Patel | May 2001 | B1 |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6293517 | Cunningham | Sep 2001 | B1 |
6378609 | Oneal et al. | Apr 2002 | B1 |
6474412 | Hamilton et al. | Nov 2002 | B2 |
6530574 | Bailey et al. | Mar 2003 | B1 |
6547007 | Szarka et al. | Apr 2003 | B2 |
6634428 | Krauss et al. | Oct 2003 | B2 |
6644412 | Bode et al. | Nov 2003 | B2 |
6666273 | Laurel | Dec 2003 | B2 |
6668933 | Kent | Dec 2003 | B2 |
6681860 | Yokley et al. | Jan 2004 | B1 |
6712145 | Allamon | Mar 2004 | B2 |
6712415 | Darbishire et al. | Mar 2004 | B1 |
6834726 | Giroux et al. | Dec 2004 | B2 |
6866100 | Gudmestad et al. | Mar 2005 | B2 |
6896049 | Moyes | May 2005 | B2 |
6948561 | Myron et al. | Sep 2005 | B2 |
6983795 | Zuklic et al. | Jan 2006 | B2 |
7150326 | Bishop et al. | Dec 2006 | B2 |
7322408 | Howlett | Jan 2008 | B2 |
7325617 | Murray | Feb 2008 | B2 |
7337847 | McGarian et al. | Mar 2008 | B2 |
7350578 | Szarka et al. | Apr 2008 | B2 |
7377321 | Rytlewski | May 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7416029 | Telfer et al. | Aug 2008 | B2 |
7467664 | Cochran et al. | Dec 2008 | B2 |
7503390 | Gomez | Mar 2009 | B2 |
7503392 | King et al. | Mar 2009 | B2 |
7520336 | Mondelli et al. | Apr 2009 | B2 |
7730953 | Casciaro | Jun 2010 | B2 |
7832472 | Themig | Nov 2010 | B2 |
20010007284 | French et al. | Jul 2001 | A1 |
20040007365 | Hill et al. | Jan 2004 | A1 |
20050061372 | McGrath et al. | Mar 2005 | A1 |
20050072572 | Churchill | Apr 2005 | A1 |
20050126638 | Gilbert | Jun 2005 | A1 |
20050205264 | Starr et al. | Sep 2005 | A1 |
20060124310 | Lopez de Cardenas et al. | Jun 2006 | A1 |
20060169463 | Howlett | Aug 2006 | A1 |
20060175092 | Mashburn | Aug 2006 | A1 |
20060213670 | Bishop et al. | Sep 2006 | A1 |
20060243455 | Telfer et al. | Nov 2006 | A1 |
20070007007 | Themig et al. | Jan 2007 | A1 |
20070012438 | Hassel-Sorensen | Jan 2007 | A1 |
20070023087 | Krebs et al. | Feb 2007 | A1 |
20070095538 | Szarka et al. | May 2007 | A1 |
20070272413 | Rytlewski et al. | Nov 2007 | A1 |
20080066924 | Xu | Mar 2008 | A1 |
20080093080 | Palmer et al. | Apr 2008 | A1 |
20080190620 | Posevina et al. | Aug 2008 | A1 |
20080217025 | Ruddock et al. | Sep 2008 | A1 |
20080308282 | Standridge et al. | Dec 2008 | A1 |
20090032255 | Surjaatmadja et al. | Feb 2009 | A1 |
20090044946 | Schasteen et al. | Feb 2009 | A1 |
20090044955 | King et al. | Feb 2009 | A1 |
20090056934 | Xu | Mar 2009 | A1 |
20090056952 | Churchill | Mar 2009 | A1 |
20090107680 | Surjaatmadja | Apr 2009 | A1 |
20090159289 | Avant et al. | Jun 2009 | A1 |
20090308588 | Howell et al. | Dec 2009 | A1 |
20100294514 | Crow et al. | Nov 2010 | A1 |
20110108284 | Flores et al. | May 2011 | A1 |
20110180274 | Wang et al. | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
0427422 | May 1991 | EP |
2281924 | Mar 1995 | GB |
0015943 | Mar 2000 | WO |
Entry |
---|
Response to Office Action dated Oct. 15, 2008, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A. |
Office Action dated Jun. 25, 2009, in U.S. Appl. No. 11/891,714, USPTO, U.S.A. |
Office Action dated Jun. 19, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A. |
Response to Restriction Requirement dated Apr. 22, 2009 in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A. |
Office Action dated Apr. 9, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A. |
Notice of Allowance & Fees Due and Notice of Allowability dated Jan. 5, 2009, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A. |
Office Action dated Jul. 16, 2008 in U.S. Appl. No. 11/891,713 U.S. Patent and Trademark Office, U.S.A. |
International Search Report, Feb. 11, 2009 pp. 1-3, PCT/US2008/072732, Korean Intellectual Property Office. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072732, Kroean Intellectual Property Office. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office. |
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-3, PCT/US2008/072732, Korean Intellectual Property Office. |
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office. |
International Search Report, Feb. 11,2 009, pp. 1-3, PCT/US2008/072734, Korean Intellectual Property Office. |
International Search Report, Feb. 11, 2009, pp. 1-3, PCT/US2008/072735, Korean Intellectual Property Office. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Jan. 19, 2009, pp. 1-4, PCT/US2008/072470, Korean Intellectual Property Office. |
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office. |
Written Opinion of the International Searching Authority, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office. |
International Search Report, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office. |
Baker Hughes, Baker Oil Tools, Conventional Fishing Technical Unit; Pump Out Sub Product Family No. H14061, Jun. 7, 2005, 1 page. |
Ross, C. M., et al., “Current Materials and Devices for Control of Fluid Loss,” SPE 54323, Apr. 1999, pp. 1-16. |
Hoffman, C.R., “One-Trip Sand-Control/Liner Hangar/ Big-Bore Completion System,” SPE 101086, Sep. 2006, pp. 1-10. |
G.L. Rytlewski, A Study of Fracture Initiation Pressures in Cemented Cased-Hole Wells Without Perforations, May 15, 2006, pp. 1-10, SPE 100572, Society of Petroleum Engineers, U.S.A. |
Boscan, J., et al., “Successful Well Testing Operations in High-Pressure/High-Temperature Encironment; Case Histories,” SPE 84096, Oct. 2003, pp. 1-15. |
Brad Musgrove, Multi-Layer Fracturing Solution Treat and Produce Completions, Nov. 12, 2007, pp. 1-23, Schlumberger, U.S.A. |
RFID Keystone Module, RFID & Intelligent Products, Petrowell retrieved online on May 27, 2009 from: http://www.petrowell.co.uk/index2.php?option=com—docman&task=doc—view&gid=15&Itemid=26. |
StageFRAC Maximize Reservoir Drainage, 2007, pp. 1-2, Schlumberger, U.S.A. |
TAP Completion System, Schlumberger, 4 pages, Dec. 2007. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2010/044378; Mailed Mar. 17, 2011. |
International Search Report; PCT/US2010/033737; Korean Intellectual Property Office; Mailed Jan. 24, 2011. |
International Search Report; Date of Mailing Jan. 24, 2011; International Appln No. PCT/US2010/034736; 3 Pages. |
International Search Report; Date of Mailing Jan. 24, 2011; Internatiaonal Appln. No. PCT/US2010/034752; 3 Pages. |
International Search Report and Written Opinion; Date of Mailing Feb. 11, 2011; International Appln No. PCT/US2010/041049; International Search Report 5 Pages and Written Opinion 3 Pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/044856; Mailed Apr. 15, 2011. |
Notification of Transmittal of the International Search Report and The Written Opinion of the International Searching Authority; PCT/US2010/044383; Mailed Apr. 15, 2011. |
International Search Report; PCT/US2010/044399; International Searching Authority KIPO; Mailed Mar. 21, 2011. |
Notification of Transmittal of the International Search Report and The Written Opinion of the International Searching Authority; PCT/US2010/054487; International Searching Authority; KIPO; Mailed Jun. 3, 2011. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/049810; International Searching Authority KIPO; Mailed Apr. 25, 2011. |
International Search Report and Written Opinion; Date of Mailing Aug. 29, 2011; International Application No. PCT/US2011/022523; International Filing Date Jan. 26, 2011; Korean Intellectual Property Office; International Search Report 5 pages; Written Opinion 3 pages. |
Notification of Transmittal of The International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/041663; Korean Intellectual Property Office; Mailed Dec. 14, 2011; 8 pages. |
Number | Date | Country | |
---|---|---|---|
20110030968 A1 | Feb 2011 | US |