Tubular actuator, system and method

Information

  • Patent Grant
  • 8646531
  • Patent Number
    8,646,531
  • Date Filed
    Thursday, October 29, 2009
    15 years ago
  • Date Issued
    Tuesday, February 11, 2014
    10 years ago
Abstract
A tubular actuating system includes a tubular, a plurality of same plugs runnable within the tubular, an actuator disposed within the tubular, and a seatable member disposed at the actuator configured to be respositionable relative to the actuator between an unseated position and a seated position upon passage of at least one of the plurality of same plugs.
Description
BACKGROUND

Tubular system operators are always receptive to new methods and devices to permit actuation of tubular tools such as those in industries concerned with earth formation boreholes, such as hydrocarbon recovery and gas sequestration, for example. It is not uncommon for various operations in these industries to utilize a temporary or permanent plugging device against which to build pressure to cause an actuation.


Sometimes actuating is desirable at a first location, and subsequently at a second location. Moreover, additional actuating locations may also be desired and the actuation can be sequential for the locations or otherwise. Systems employing droppable members, such as balls, for example, are typically used for just such purpose. The ball is dropped to a ball seat positioned at the desired location within the borehole thereby creating the desired plug to facilitate the actuation.


In applications where the first location is further from surface than the second location, it is common to employ seats with sequentially smaller diameters at locations further from the surface. Dropping balls having sequentially larger diameters allows the ball seat furthest from surface to be plugged first (by a ball whose diameter is complementary to that seat), followed by the ball seat second furthest from surface (by a ball whose diameter is complementary to that seat) and so on.


The foregoing system, however, creates increasingly restrictive dimensions within the borehole that can negatively impact flow therethrough as well as limit the size of tools that can be run into the borehole. Additionally, the number of discrete ball/seat combinations that can be run is limited as a result of the increasingly restrictive dimensions. Systems and methods that allow operators to increase the number of actuatable locations within a borehole without the drawbacks mentioned would be well received in the art.


BRIEF DESCRIPTION

Disclosed herein is a tubular actuating system. The system includes, a tubular, a plurality of same plugs runnable within the tubular, an actuator disposed within the tubular, and a seatable member disposed at the actuator configured to be respositionable relative to the actuator between an unseated position and a seated position upon passage of at least one of the plurality of same plugs.


Further disclosed herein is a method of actuating a tubular actuator. The method includes, running a runnable member within a tubular, contacting the tubular actuator with the runnable member, repositioning a seatable member, seating the seatable member, and pressuring up against the seated seatable member to actuate the tubular actuator.


Further disclosed herein is a tubular actuator. The actuator includes, a body disposable within a tubular being movable relative to the tubular, and a member being repositionable relative to the body from an unseated position to a seated position upon passage of at least one runnable member thereby.





BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:



FIG. 1 depicts a partial cross sectional view of a tubular actuator disclosed herein being contacted with a runnable member;



FIG. 2 depicts a partial cross sectional view of the tubular actuator of FIG. 1 shown being contacted with another runnable member; and



FIG. 3 depicts a partial cross sectional view of the tubular actuator of FIG. 1 shown with a seatable member in a seated position.





DETAILED DESCRIPTION

A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.


Referring to FIGS. 1-3, an embodiment of a tubular actuator disclosed herein is illustrated generally at 10. The tubular actuator 10 includes, a body 14, having a tubular shape, disposed within a tubular 18, a seatable member 22, illustrated in this embodiment as a flapper, a sleeve 26, and an optional collar 30. The flapper 22, the sleeve 26 and the collar 30 are all repositionable relative to the body 14 in response to contact of the actuator 10 with runnable members 34, also referred to herein as plugs or balls, which are runnable within the tubular 18. The sleeve 26, in this embodiment, is originally positioned in longitudinal alignment with and radially inwardly of the flapper 22. This initial position of the sleeve 26 maintains the flapper 22 in an open position, as shown in FIGS. 1 and 2.


The sleeve 26 has a profile 38 on an inner radial surface 42 engagably receptive to the balls 34, as best shown in FIG. 2. Pressure applied against the ball 34, when engaged with the profile 38, can urge the sleeve 26 to reposition to a downstream position as shown in FIG. 3. When in the downstream position the sleeve 26 is no longer longitudinally aligned with the flapper 22, thereby allowing the flapper 22 to reposition from the open position to a closed position wherein the flapper 22 is seatingly engaged with a seat 46 on the body 14. A biasing member 40, illustrated herein as a torsional spring can rotationally bias the flapper 22 toward the closed position. When the flapper 22 is seatingly engaged with the seat 46 any pressure increases upstream of the flapper 22 will increase forces applied to the actuator 10 thereby urging actuation thereof.


The optional collar 30, if the actuator 10 is so equipped (as the one illustrated herein is), longitudinally overlaps the profile 38 of the sleeve 26 in its original position. This overlapping positioning holds collet fingers 50, of the sleeve 26, in a radially expanded position, as shown in FIG. 1. Since the profile 38 is on the radially expanded portion of the sleeve 26, the ball 34 is able to pass thereby without engaging the profile 38. A profile 54 on the collar 30, also engagable with the balls 34, allows pressure applied against a ball 34 seated therewith to reposition the collar 30 to a downstream position as shown in FIGS. 2 and 3. Once the collar 30 is disengaged from the overlapping position with the sleeve 26 the profile 38 is able to return to an unexpanded position wherein it is engagable with the balls 34. An annular recess 58 in the body 14 is receptive to radially expanded collet fingers 62 of the collar 30 such that the ball 34 is able to pass thereby.


The foregoing construction allows an operator to run a ball 34 within the tubular 18 until it engages with the profile 54. Pressuring up against the engaged ball 34 allows the sleeve to be moved downstream until the collet fingers 62 expand into the annular recess 58 thereby allowing the ball 34 to pass through the collar 30, possibly to be used to actuate another tool located downstream thereof. The downstream movement of the collar 30, in relation to the sleeve 26, releases the collet fingers 50 thereby configuring the profile 38 to engage the next ball 34 to be run thereagainst. Pressure built upstream of the second ball 34 engaged with the profile 38 causes the sleeve 26 to move downstream thereby releasing the flapper 22 allowing the flapper 22 to move from the open position to the closed position. Once closed, the flapper 22, being seated against the seat 46, allows pressure to build upstream thereof to allow actuation of the actuator 10. Such actuation may be used to open ports 66 through the tubular 18, for example, to allow fluid treating such as fracturing or acidizing of a formation within which the tubular 18 is positioned, in the case of an application involved in the hydrocarbon recovery industry.


By allowing one or more of the balls 34 to pass, prior to the closing of the flapper 22 and subsequent actuation of the actuator 10, the system employing a plurality of the actuators 10 and/or other conventional actuators that actuate, for example, upon engagement with a first of the balls 34, can increase the number of actuatable zones with balls 34 of a particular size. This system alleviates the concerns associated with conventional systems that incorporate a plurality of actuators, each with smaller dimensions than the last, to permit actuation with balls of ever decreasing size. Some concerns being the decrease in production flows due to the smaller flow areas created by the smaller dimensions, and restrictions on the size of tools that can be employed during intervention due to the smaller dimensions. Additionally, the increased number of actuators can be employed to open an increased number of ports such as the ports 66, thereby increasing a number of zones that can be fractured or treated for a given well.


While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims
  • 1. A tubular actuating system, comprising: a tubular;a plurality of same plugs runnable within the tubular;an actuator disposed within the tubular; anda flapper disposed at the actuator configured to be repositionable relative to the actuator between an unseated position and a seated position upon passage of a second of the plurality of same plugs but not upon passage of a first of the plurality of same plugs, the actuator being configured to be directly modified to engage the second of the plurality of same plugs in response to engagement of the first of the plurality of same plugs with the actuator and passage of the first of the plurality of same plugs from a first end of the actuator to a second end of the actuator, the tubular actuator being configured to actuate in response to pressure built against the flapper in a same direction as the plugs were run.
  • 2. The tubular actuating system of claim 1, wherein the plurality of same plugs are balls.
  • 3. The tubular actuating system of claim 1, further comprising a sleeve in operable communication with the flapper and the actuator such that the sleeve prevents repositioning of the flapper until being moved by at least one of the plurality of same plugs.
  • 4. The tubular actuating system of claim 3, wherein the sleeve is configured to be repositioned in response to contact by at least one of the plurality of same plugs.
  • 5. The tubular actuating system of claim 3, further comprising a collar in operable communication with the sleeve configured to prevent repositioning of the sleeve until after the collar has been repositioned.
  • 6. The tubular actuating system of claim 5, wherein the collar is configured to be repositioned in response to being moved by a first of the plurality of same plugs.
  • 7. The tubular actuating system of claim 5, wherein the collar is configured to allow passage of a first of the plurality of same plugs after repositioning thereof.
  • 8. The tubular actuating system of claim 7, wherein the actuator remains unactuated after passage of the first plug thereby allowing the first plug to actuate another device positioned within the tubular.
  • 9. The tubular actuating system of claim 1, wherein the flapper is biased toward the seated position.
  • 10. The tubular actuating system of claim 1, wherein the tubular includes at least one port therethrough openable by actuation of the actuator.
  • 11. The tubular actuating system of claim 10, wherein the at least one port is configured to allow fracturing of a formation therethrough.
  • 12. The tubular actuating system of claim 10, wherein the at least one port is configured to allow fluid treating of a formation therethrough.
  • 13. A method of actuating a tubular actuator, comprising: running a first runnable member within a tubular;engaging the tubular actuator with the first runnable member;passing the runnable member by the tubular actuator without seating a flapper;directly altering the tubular actuator with the first runnable member to a configuration engagable by a second runnable member;running a second runnable member dimensioned the same as the first runnable member within the tubular;engaging the tubular actuator with the second runnable member, thereby repositioning the flapper;seating the flapper; andpressuring up against the seated flapper in a same direction that the runnable members were run to actuate the tubular actuator.
  • 14. The method of actuating a tubular actuator of claim 13, further comprising repositioning a sleeve relative to the tubular actuator with the runnable member.
  • 15. The method of actuating a tubular actuator of claim 14, further comprising repositioning a collar relative to the tubular actuator with a first runnable member before repositioning the sleeve with a second runnable member.
  • 16. The method of actuating a tubular actuator of claim 15, wherein the first runnable member and the second runnable member have substantially the same dimensions.
  • 17. The method of actuating a tubular actuator of claim 15, wherein the collar prevents repositioning of the sleeve until the collar has been repositioned.
  • 18. The method of actuating a tubular actuator of claim 13, further comprising passing a first runnable member by the tubular actuator.
  • 19. A tubular actuator comprising: a body disposable within a tubular being movable relative to the tubular;a sleeve being movable relative to the body by a runnable member being engaged therewith; anda flapper being repositionable relative to the body from an unseated position to a seated position upon movement of the sleeve, the sleeve being directly alterable to be engagably movable by a second runnable member in direct response to engagement of a first runnable member with the tubular actuator and passage of the first runnable member from a first end of the tubular actuator to a second end of the tubular actuator, the tubular actuator being actuatable in response to pressure built against the seated flapper in a same direction as the runnable members were run.
  • 20. The tubular actuator of claim 19, wherein the body is configured to move relative to the tubular in response to pressure applied against the flapper in the seated position.
US Referenced Citations (143)
Number Name Date Kind
1883071 Stone Dec 1928 A
2769454 Bletcher et al. Nov 1956 A
2812717 Brown Nov 1957 A
2822757 Colberly Feb 1958 A
2973006 Nelson Feb 1961 A
3007527 Nelson Nov 1961 A
3013612 Angel Dec 1961 A
3148731 Holden Sep 1964 A
3211232 Grimmer Oct 1965 A
3263752 Conrad Aug 1966 A
3358771 Berryman Dec 1967 A
3510103 Carsello May 1970 A
3566964 Livingston Mar 1971 A
3583714 Weltzer et al. Jun 1971 A
3599998 Kiwalle et al. Aug 1971 A
3667505 Radig Jun 1972 A
3669462 Parsons Jun 1972 A
3703104 Tamplen Nov 1972 A
3727635 Todd Apr 1973 A
3797255 Kammerer, Jr. et al. Mar 1974 A
3901315 Parker et al. Aug 1975 A
3954138 Miffre May 1976 A
3997003 Adkins Dec 1976 A
4067358 Streich Jan 1978 A
4160478 Calhoun et al. Jul 1979 A
4176717 Hix Dec 1979 A
4190239 Schwankhart Feb 1980 A
4246968 Jessup et al. Jan 1981 A
4260017 Nelson et al. Apr 1981 A
4291722 Churchman Sep 1981 A
4292988 Montgomery Oct 1981 A
4355685 Beck Oct 1982 A
4390065 Richardson Jun 1983 A
4448216 Speegle et al. May 1984 A
4474241 Freeman Oct 1984 A
4478279 Puntar et al. Oct 1984 A
4537383 Fredd Aug 1985 A
4554981 Davies Nov 1985 A
4566541 Moussy et al. Jan 1986 A
4576234 Upchurch Mar 1986 A
4583593 Zunkel et al. Apr 1986 A
4669538 Szarka Jun 1987 A
4711326 Baugh et al. Dec 1987 A
4714116 Brunner Dec 1987 A
4729432 Helms Mar 1988 A
4762447 Marantette Aug 1988 A
4823882 Stokley et al. Apr 1989 A
4826135 Mielke May 1989 A
4856591 Donovan et al. Aug 1989 A
4893678 Stokley et al. Jan 1990 A
4944379 Haaser Jul 1990 A
4979561 Szarka Dec 1990 A
5029643 Winslow et al. Jul 1991 A
5056599 Comeaux et al. Oct 1991 A
5230390 Zastresek et al. Jul 1993 A
5244044 Henderson Sep 1993 A
5297580 Thurman Mar 1994 A
5305837 Johns et al. Apr 1994 A
5335727 Cornette et al. Aug 1994 A
5343946 Morrill Sep 1994 A
5398947 Cook Mar 1995 A
5529126 Edwards Jun 1996 A
5609178 Hennig et al. Mar 1997 A
5704393 Connell et al. Jan 1998 A
5762142 Connell et al. Jun 1998 A
5775421 Duhon et al. Jul 1998 A
5775428 Davis et al. Jul 1998 A
5813483 Latham et al. Sep 1998 A
5960881 Allamon et al. Oct 1999 A
6050340 Scott Apr 2000 A
6053250 Echols Apr 2000 A
6079496 Hirth Jun 2000 A
6102060 Howlett et al. Aug 2000 A
6155350 Melenyzer Dec 2000 A
6173795 McGarian et al. Jan 2001 B1
6220350 Brothers et al. Apr 2001 B1
6227298 Patel May 2001 B1
6253861 Carmichael et al. Jul 2001 B1
6293517 Cunningham Sep 2001 B1
6378609 Oneal et al. Apr 2002 B1
6474412 Hamilton et al. Nov 2002 B2
6530574 Bailey et al. Mar 2003 B1
6547007 Szarka et al. Apr 2003 B2
6634428 Krauss et al. Oct 2003 B2
6644412 Bode et al. Nov 2003 B2
6666273 Laurel Dec 2003 B2
6668933 Kent Dec 2003 B2
6681860 Yokley et al. Jan 2004 B1
6712145 Allamon Mar 2004 B2
6712415 Darbishire et al. Mar 2004 B1
6834726 Giroux et al. Dec 2004 B2
6866100 Gudmestad et al. Mar 2005 B2
6896049 Moyes May 2005 B2
6948561 Myron Sep 2005 B2
6983795 Zuklic et al. Jan 2006 B2
7150326 Bishop et al. Dec 2006 B2
7322408 Howlett Jan 2008 B2
7325617 Murray Feb 2008 B2
7337847 McGarian et al. Mar 2008 B2
7350578 Szarka et al. Apr 2008 B2
7377321 Rytlewski May 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7416029 Telfer et al. Aug 2008 B2
7467664 Cochran et al. Dec 2008 B2
7503390 Gomez Mar 2009 B2
7503392 King et al. Mar 2009 B2
7520336 Mondelli et al. Apr 2009 B2
7730953 Casciaro Jun 2010 B2
7832472 Themig Nov 2010 B2
7971883 Soroka et al. Jul 2011 B2
20010007284 French et al. Jul 2001 A1
20040007365 Hill et al. Jan 2004 A1
20050061372 McGrath et al. Mar 2005 A1
20050072572 Churchill Apr 2005 A1
20050126638 Gilbert Jun 2005 A1
20050205264 Starr et al. Sep 2005 A1
20060124310 Lopez de Cardenas et al. Jun 2006 A1
20060169463 Howlett Aug 2006 A1
20060175092 Mashburn Aug 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060243455 Telfer et al. Nov 2006 A1
20070007007 Themig et al. Jan 2007 A1
20070012438 Hassel-Sorensen Jan 2007 A1
20070023087 Krebs et al. Feb 2007 A1
20070095538 Szarka et al. May 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20080066924 Xu Mar 2008 A1
20080093080 Palmer et al. Apr 2008 A1
20080190620 Posevina et al. Aug 2008 A1
20080217025 Ruddock et al. Sep 2008 A1
20080308282 Standridge et al. Dec 2008 A1
20090032255 Surjaatmadja et al. Feb 2009 A1
20090044944 Murray et al. Feb 2009 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044955 King et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090056952 Churchill Mar 2009 A1
20090107680 Surjaatmadja Apr 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090308588 Howell et al. Dec 2009 A1
20100294514 Crow et al. Nov 2010 A1
20110108284 Flores et al. May 2011 A1
20110180274 Wang et al. Jul 2011 A1
Foreign Referenced Citations (4)
Number Date Country
2760107 Nov 2010 CA
0427422 May 1991 EP
2281924 Mar 1995 GB
0015943 Mar 2000 WO
Non-Patent Literature Citations (40)
Entry
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/044856; Mailed Apr. 15, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/044383; Mailed Apr. 15, 2011.
International Search Report and Written Opinion; Date of Mailing Aug. 29, 2011; International Application No. PCT/US2011/022523; International Filing Date Jan. 26, 2011; Korean Intellectual Property Office; International Search Report 5 pages; Written Opinion 3 pages.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2010/044378; Mailed Mar. 17, 2011.
International Search Report; PCT/US2010/033737; Korean Intellectual Property Office; Mailed Jan. 24, 2011.
International Search Report; Date of Mailing Jan. 24, 2011; International Appln No. PCT/US2010/034736; 3 Pages.
International Search Report; Date of Mailing Jan. 24, 2011; Internatiaonal Appln. No. PCT/US2010/034752; 3 Pages.
Nternational Search Report and Written Opinion; Date of Mailing Feb. 11, 2011; International Appln No. PCT/US2010/041049; International Search Report 5 Pages and Written Opinion 3 Pages.
International Search Report; PCT/US2010/044399; International Searching Authority KIPO; Mailed Mar. 21, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/054487; International Searching Authority; KIPO; Mailed Jun. 3, 2011.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/049810; International Searching Authority KIPO; Mailed Apr. 25, 2011.
Response to Office Action dated Oct. 15, 2008, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Jun. 25, 2009, in U.S. Appl. No. 11/891,714, USPTO, U.S.A.
Office Action dated Jun. 19, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Response to Restriction Requirement dated Apr. 22, 2009 in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Apr. 9, 2009, in U.S. Appl. No. 11/891,715, U.S. Patent and Trademark Office, U.S.A.
Notice of Allowance & Fees Due and Notice of Allowability dated Jan. 5, 2009, in U.S. Appl. No. 11/891,713, U.S. Patent and Trademark Office, U.S.A.
Office Action dated Jul. 16, 2008 in U.S. Appl. No. 11/891,713 U.S. Patent and Trademark Office, U.S.A.
International Search Report, Feb. 11, 2009 pp. 1-3, PCT/US20081072732, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072732, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-3, PCT/US2008/072732, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072734, Korean Intellectual Property Office.
International Search Report, Feb. 11, 2009, pp. 1-3, PCT/US2008/072734, Korean Intellectual Property Office.
International Search Report, Feb. 11, 2009, pp. 1-3, PCT1US2008/072735, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, Or the Declaration, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Jan. 19, 2009, pp. 1-4, PCT/US20081072470, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Feb. 11, 2009, pp. 1-4, PCT/US2008/072735, Korean Intellectual Property Office.
Written Opinion of the International Searching Authority, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office.
International Search Report, Jan. 19, 2009, pp. 1-3, PCT/US2008/072470, Korean Intellectual Property Office.
Baker Hughes, Baker Oil Tools, Conventional Fishing Technical Unit; Pump Out Sub Product Family No. H14061, Jun. 7, 2005, 1 page.
Ross, C. M., et al., “Current Materials and Devices for Control of Fluid Loss,” SPE 54323, Apr. 1999, pp. 1-16.
Hoffman, C.R., “One-Trip Sand-Control/Liner Hangar/ Big-Bore Completion System,” SPE 101086, Sep. 2006, pp. 1-10.
G.L. Rytlewski, A Study of Fracture Initiation Pressures in Cemented Cased-Hole Wells Without Perforations, May 15, 2006, pp. 1-10, SPE 100572, Society of Petroleum Engineers, U.S.A.
Boscan, J. et al., “Successful Well Testing Operations in High-Pressure/High-Temperature Encironment; Case Histories,” SPE 84096, Oct. 2003, pp. 1-15.
Brad Musgrove, Multi-Layer Fracturing Solution Treat and Produce Completions, Nov. 12, 2007, pp. 1-23, Schlumberger, U.S.A.
RFID Keystone Module, RFID & Intelligent Products, Petrowell retrieved online on May 27, 2009 from: http://www.petrowell.co.uk/index2.php?option=com—docman&task=doc—view&gid=15&Itemid=26.
StageFRAC Maximize Reservoir Drainage, 2007, pp. 1-2, Schlumberger, U.S.A.
TAP Completion System, Schlumberger, 4 pages, Dec. 2007.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/041663; Korean Intellectual Property Office; Mailed Dec. 14, 2011; 8 pages.
Related Publications (1)
Number Date Country
20110100647 A1 May 2011 US