BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a fragmentary side elevation view of a hydro-formed tubular B-pillar to a stamped rocker joint made according to one embodiment of the present invention;
FIG. 2 is a front elevation view of the hydro-formed B-pillar;
FIG. 3 is an inside elevation view of the hydro-formed B-pillar;
FIG. 4 is a cross-sectional view taken along the line 4-4 in FIGS. 2 and 3;
FIG. 5 is a cross-sectional view taken along the line 5-5 in FIGS. 2 and 3;
FIG. 6 is a fragmentary side elevation view of a side sill portion of the rocker assembly;
FIG. 7 is a side elevation view of a rocker reinforcement portion of the rocker assembly; and
FIG. 8 is a fragmentary transverse cross-sectional view of the B-pillar to the stamped rocker joint made according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT
Referring to FIG. 1, a tubular B-pillar to stamped rocker joint assembly 10 is shown. The joint assembly 10 is used to join the B-pillar 12 to a side sill 16 and a rocker reinforcement 18. The B-pillar 12 is welded to an outer body panel 20. While the invention is described with reference to a B-pillar 12, the invention is not limited to a B-pillar and it should be understood that the same general joint assembly and method of making a joint assembly for the present invention could also be applied to other structural pillars of the vehicle.
An upper access hole 22 is also shown in FIG. 1 that is formed in an outer wall 24 of the B-pillar 12. The upper access hole 22 is provided to permit welding the B-pillar 12 to the rocker reinforcement 18 as will be more fully described with reference to FIG. 8 below.
Referring to FIGS. 2 and 3, two views of a B-pillar 12 are shown. The B-pillar extends between the roof (not shown) of a vehicle and a rocker panel assembly that is partially shown in FIG. 1 above. The B-pillar 12 has a pinched double flange 28 on its lower end that may also be referred to as the bottom flange of the pillar. Referring specifically to FIG. 3, a single wall area 30 is provided on the pinched double flange 28. The single wall area 30 of the B-pillar 12 is provided to facilitate welding the pinched double flange 28 to the side sill 16 and rocker reinforcement 18.
Referring to FIGS. 2-4, a lower portion 32 of the B-pillar 12 is shown to be formed as an elongated box cross-section in the longitudinal vehicle direction. The lower portion 32 is provided above the pinched double flange that is located at the lower end of the B-pillar. The lower portion 32 of the B-pillar 12 has an outer wall 24 and an inner wall 38 that are joined by a front wall 42 and a back wall 44.
Referring to FIGS. 2, 3 and 5, a middle portion 36 of the B-pillar 12 is shown to have a substantially equilateral cross-section that is provided above the lower portion 32. As used herein the term “substantially equilateral cross-section” should be construed to mean a generally boxed shaped cross-section having nearly equal sides that are disposed at nearly right angles to each other. The corners of the elongated box cross-section are rounded and the walls may have non-linear areas depending upon the requirements of the vehicle design.
Referring to FIG. 6, the side sill 16 is shown secured to the B-pillar 12. The side sill 16 includes an access hole 48 that provides access to allow welding the rocker reinforcement 18 to the B-pillar 12.
Referring to FIG. 7, a rocker reinforcement 18 is shown. The rocker reinforcement 18 is joined to the side sill 16 and B-pillar 12 as will be more specifically described with reference to FIG. 8 below.
Referring to FIG. 8, the joint assembly 10 is illustrated in cross-section to show how the B-pillar 12 and body outer panel are joined as a first subassembly. The side sill 16 and rocker reinforcement 18 are also joined together as a second subassembly. The two subassemblies are joined by welding the rocker reinforcement 18 to the inner wall 38 of the B-pillar 12. A weld is formed that is accessible through an upper access hole 22 in the outer wall 24 of the B-pillar 12, an access hole 48 formed in the side sill 16, and an access hole 52 formed in the outer panel 20. The outer wall 24 of the B-pillar 12 includes a single wall area 30 at the lower end of the B-pillar where it is joined to a bottom flange 58 of the side sill 16 and a bottom flange 60 of the rocker reinforcement 18.
A lower access hole 50 is provided in the inner wall 38 of the B-pillar 12 to permit welding the outer wall 24 to the body outer panel 20 to form the subassembly of the B-pillar 12 and the outer body panel 20 before the B-pillar 12 is joined to the rocker reinforcement 18 as described above.
The side sill 16 and rocker reinforcement 18 are joined at their upper edges by welding an upper edge flange 54 of the side sill 16 to an upper edge flange 56 of the rocker reinforcement 18. Similarly, a lower edge flange 58 of the side sill 16 is welded to a lower edge flange 60 of the rocker reinforcement 18. The single wall area 30 of the B-pillar 12 is also welded to the bottom or lower edge flanges 58 and 60 when the subassemblies are joined together.
While the best mode for carrying out the invention has been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention as defined by the following claims.