The present invention provides an apparatus and a method for connecting tubular members in a wellbore and in particular provides an apparatus and a method for sealing and/or securing a first (inner) tubular to a second (outer) tubular in a wellbore and thereby providing an annular seal between the first and second tubular members.
In wellbore drilling and completion, various tubular elements (also typically referred to in the industry as “tubulars”) need to be connected to each other. For example, in well completions, liner strings may have to be connected end to end in order to line the wellbore to the required depth. In some cases, one tubular has to be set inside another tubular by increasing the diameter of the inner tubular until it contacts the inner wall of the outer tubular and creates an interference fit therewith. The connection between the tubulars very often must be capable of withstanding axial loads (i.e. secured). The connection should also be fluid tight to provide an annular barrier between the tubulars (i.e. sealed) to prevent fluid passage between the internal bore of the outer tubular and the exterior of the inner tubular.
One arrangement for connecting tubular members in a wellbore is described in WO2011/048426 A2 and includes a metal to metal seal between first and second tubular members 1, 2 in a cased wellbore, as shown in
The problem associated with the above described arrangement is that well fluid present at the interface between the tubular members may become trapped in the recesses which can lead to the formation of hydraulic lock which is potentially damaging to the tubular members and/or means that an effective seal is not formed. In addition, the circumferential recesses or grooves must be preformed or machined and set in the wellbore at a suitable depth prior to any connection being made.
A solution to above described problem is described in EP2013445 B1 and illustrated in
A drawback associated with the above-described arrangement of EP2013445B1 is that the tubular members between which the seal connection is made in those arrangements have relatively complicated profiles, particularly the first (inner) tubular member 4 due to its varying sidewall thickness which result in relatively high manufacturing costs. In addition, the performance of such a connection is limited due to the limited means of modifying the single piece assembly.
Accordingly, the object of the present invention is to provide an expandable tubular connection which is relatively inexpensive to manufacture whilst being capable of providing a reliable hermetic seal and/or being capable of creating a secure connection through which axial force can be transferred and therefore resist relative axial movement occurring. In addition, the object of the present invention is to provide an expandable tubular connection which can be readily adapted to suit different applications.
According to a first aspect of the invention there is provided an apparatus for connecting tubular members in a wellbore, the apparatus comprising
The outward expansion may be achieved, for example, by application of radial outward pressure or force to side walls of the expandable portion within an inner bore of the expandable portion.
Preferably, the expandable portion comprises one or more reinforcing annular members mounted around the outer circumference of at least a portion of the axial length of the expandable portion.
Thus, in use, when the expandable portion of the host tubular member is expanded radially outwardly, the or each region having greater resistance (hereinafter referred to as “stronger region” for brevity) resists radial expansion more than the or each region having lower resistance (hereinafter referred to as “weaker region” for brevity), such that the or each weaker region starts expanding first and seals the host tubular member against the second tubular member prior to the stronger region.
In a preferred embodiment, a plurality of annular members are arranged in a predetermined sequence so that the resistance of each subsequent annular member increases progressively in a predetermined manner so that the expandable portion starts expanding at the weakest region first and continues to expand sequentially towards the strongest region. For example, in one arrangement, the resistance of each subsequent annular member increases progressively from a middle region of the expandable portion towards outer ends of the expandable portion; or, in another arrangement, from one end of the expandable portion towards another.
The provision of the or each annular member as a separate device mounted on or otherwise fixed to the host tubular member after the host tubular member has been manufactured, makes it possible for the host tubular member or at least the expandable portion thereof to have a substantially uniform wall thickness and/or uniform diameter, whether internal or external or both. Thus, the host tubular member can be manufactured more easily and at a lower cost compared to prior art expandable tubular members. Accordingly, in a preferred embodiment, the host tubular member or at least the expandable portion thereof has a uniform wall thickness and/or a uniform diameter whether internal or external or both. It is however envisaged that the host tubular member can be profiled. Furthermore, the annular members can be arranged as desired on the host tubular member after the host tubular member has been manufactured, thereby making it possible to vary the configuration of the expandable portion according to particular technical requirements. Moreover, the annular members themselves are relatively easy to manufacture.
The arrangement of the annular members in the predetermined sequence so that their resistance increases progressively causes fluid to be continuously expelled from the interface between the expandable portion and the second tubular member as the expandable portion expands, so that by the time the strongest region expands all the fluid has been forced out, thereby preventing the occurrence of a hydraulic lock.
In a preferred arrangement, the host tubular member is configured to expand inside the second tubular member to seal against an inner surface of the second tubular member.
The so formed sealed joint between the host tubular member and the second tubular member has the ability to withstand axial loads and fluid pressures acting between the host tubular member and the second tubular member. The sealed joint preferably creates both a mechanical fixing between the two tubulars and also a hermetic seal between the host tubular member and the second tubular member. Preferably, the expandable portion of the host tubular member and the second tubular member comprise metallic portions which form a metal-to-metal sealed joint when the expandable portion is expanded against the second tubular member. Preferably, the sealed joint is formed as a result of initially elastic and then plastic deformation of the material of at least the expandable portion and, preferably also the second tubular member.
In one arrangement, the or each annular member comprises a ring or a band. The ring may comprise, for example, a complete ring or a split ring.
In a preferred arrangement, the or each annular member is mounted externally around the host tubular member.
The or each annular member is preferably fixed on the host tubular member in a suitable manner, such as, for example, but not limited thereto, via interference fit, welding, threaded connection, or some other method, or can be held in place by an external device.
The or each annular member may be installed by being slid over the host tubular member or by being clamped radially around the host tubular member.
The or each annular member may be made, for example, from metal, ceramics, elastomeric or composite material. The or each annular member can comprise an assembly of annular sub-members.
The resistance to radial load of the or each stronger and weaker regions can be adjusted by, for example, varying radial thickness or axial length, or the overall size and shape, of the or each annular member, varying axial spacing between each annular member, varying the material of the annular member, providing the or each annular member with other elements influencing the strength of the or each annular member, or a combination of the above.
In a preferred arrangement, one or more annular gripper elements are mounted on the expandable portion for resisting axial and/or rotational movement of the host tubular member by gripping an inner surface of the second tubular member housing the host tubular member.
Further preferably, one or more sealing elements are mounted on the expandable portion to provide an additional fluid and pressure seal.
In a preferred arrangement, a plurality of annular members are arranged axially spaced apart on the expandable portion to define annular recesses between the annular members. Each annular recess preferably has sides defined by end portions of adjacent annular members and a base defined by an intermediate portion of the host tubular member bounded by the adjacent annular members. Preferably, the annular recesses are sized and shaped such that resistance to radial load of the intermediate portion of the host tubular member between two adjacent annular members matches or corresponds to the resistance to radial load of at least one of the adjacent annular members. Further preferably, the resistance to radial load of the intermediate portion of the host tubular member between two adjacent annular members is selected from the range of resistances to radial load from equal or greater than the resistance of that annular member of the two adjacent annular members which has the lower resistance to radial load to equal or less than the resistance of that annular member which has the greater resistance. Accordingly, the resistance of each subsequent annular member and a subsequent recess on the expandable portion increases progressively so that the expandable portion as a whole starts expanding at the weakest region first and continues to expand sequentially towards the strongest region. The resistance to radial load of the intermediate portion of the host tubular member can be adjusted by, for example, varying axial spacing between adjacent annular members thereby varying the axial length of the intermediate portion and hence its radial strength, providing the or each intermediate portion with other elements influencing the strength of the intermediate portion, or a combination of the above.
In a preferred arrangement, gripper elements and/or sealing elements are mounted in the annular recesses, preferably, so that gripper elements alternate with sealing elements. The gripper elements and/or sealing elements may be configured to influence the overall resistance to radial load of the intermediate region of the host tubular member between two adjacent annular members.
The or each gripper elements and the or each sealing elements may be made, for example, from metal, ceramics, elastomeric or composite material. Other materials, such as, for example, syntactic foam may improve sealing performance of the or each sealing elements by providing potential extra volume in the annular recess by excluding fluid between the adjacent annular members and allowing the host tubular member to expand further, by, for example, crushing the foam and increasing the interface pressure between the host tubular member, the sealing element and the second tubular member. Also, other materials, such as, for example, syntactic foam, may improve gripping performance of the or each gripping element by providing potential extra volume in the annular recess by excluding fluid between the adjacent annular members and allowing the host tubular member to expand further, by, for example, crushing the foam and increasing the interface pressure between the host tubular member, the gripping element and the second tubular member.
The or each gripper elements may comprise, for example, a complete ring or a split ring, the latter providing weaker resistance to radial load than a complete ring. A retaining arrangement is preferably provided for holding a split ring in position, such as, for example, comprising one or more of a spring, an additional ring, radially projecting inward or outward protrusions, keys or keyways mating with corresponding keyways or keys in neighbouring components, for example the or each annular ring. In another arrangement, in order to make the or each gripper elements weaker, one or more slots, preferably, substantially axial slots are formed in one or both ends of the or each gripper element. The or each gripper element may be configured to engage the host tubular member and/or the second tubular member via an interference fit created between the gripper element and the host tubular member and or the second tubular member. Alternatively or additionally, the or each gripper element may be configured to engage the host tubular member and/or the second tubular member via one or more angled faces. The host tubular member or the second tubular member may comprise profiled or roughened surfaces to facilitate resistance to axial and radial displacement of the host tubular member.
The or each sealing elements may comprise, for example, a complete ring or a split ring profiled in an appropriate way to create a seal between itself and the host tubular member and itself and the second tubular member. The or each sealing elements may be provided, for example, in the form of a Wills Ring™. The or each sealing element may be configured to engage the host tubular member and/or the second tubular member via an interference fit created between the sealing element and the host tubular member and or the second tubular member.
Preferably, a retaining arrangement is provided at one or each end of the expandable portion for keeping the or each annular members, and, if applicable, the or each gripping elements and the or each sealing elements in their respective positions on the expandable portion. In one arrangement, the retaining arrangement is provided in the form of one or more retaining nuts fastened to the host tubular member via a suitable fastening arrangement, such as, for example, but not limited thereto, one or more of screw threads, locking nuts, weld joint.
In variations of the invention, the expandable portion may be placed concentrically within the second tubular member.
The expandable portion can be expanded by an appropriate tool, such as for example a conventional prior art hydraulic expansion tool, a cone displacement tool, rollers, or any other tool capable of increasing the inner diameter of the expandable portion.
If a hydraulic expansion tool in particular is used, the or each annular member can be profiled or channelled to facilitate fluid expulsion.
The host tubular member could be any sort of tubing used downhole, for example, casing, liner or production tubing, etc. which needs to be expanded against the inner surface or bore of another larger diameter tubing.
There may be a tubular assembly comprising:
There may be a kit of parts including an apparatus for connecting tubular members in a wellbore, the apparatus comprising:
There may also be a method of manufacturing an apparatus for connecting tubular members in a wellbore, the method comprising the steps of
According to a second aspect of the invention there is provided a method of connecting tubular members in a wellbore, the method comprising the steps of:
All essential, preferred or optional features of the first aspect of the present invention can be provided in conjunction with the second aspect of the present invention where appropriate.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Referring initially to
The expandable portion 104 comprises a plurality of reinforcing annular members in the form of rings 106 mounted around the exterior of the expandable portion 104 spaced along the expandable portion 104 to define annular recesses 111. The rings 106 and recesses 111 provide resistance to radial load acting on the expandable portion 104 expansion tool when the tool expands the expandable portion 104.
In
The rings 106 are separate devices and are mounted on the host tubular member 102 after the host tubular member 102 has been manufactured, making it possible for the host tubular member 102 or at least the expandable portion 104 to have a substantially uniform wall thickness and uniform inner diameter d and therefore also a substantially uniform outer diameter along its entire length. Thus, the host tubular member 102 can be manufactured more easily and at a lower cost compared to prior art expandable tubular members. The rings 106 can be arranged as desired on the host tubular member 102 after the host tubular member 102 has been manufactured, thereby making it possible to vary the configuration of the expandable portion according to particular technical requirements. The rings 106 themselves are relatively easy to manufacture as they can in their simplest form have a substantially uniform wall thickness and a uniform inner diameter (which may be smaller than, slightly greater or somewhat greater than the outer diameter of the host tubular member 102).
The sealed joint formed between the host tubular member 102 and the second tubular member has the ability to withstand axial loads and fluid pressures acting between the host tubular member 102 and the second tubular member. The sealed joint creates a mechanical fixing and a hermetic seal between the host tubular member 102 and the second tubular member. The expandable portion 104, the rings 106, and the second tubular member may be made from metal or at least comprise metallic portions which form a metal-to-metal sealed joint when the expandable portion 104 is expanded against the second tubular member. The sealed joint is formed as a result of initially elastic and then plastic deformation of the material of one or each of the expandable portion 102, including the rings 106, and possibly the second tubular member.
In the embodiments of
In the embodiments of
The rings 106 may be installed by sliding them over or by clamping radially around the host tubular member 102.
The rings 106 may be made, for example, from metal, ceramics or composite material. Although not shown in the drawings, the rings 106 can be composed from an assembly of annular sub-members.
The resistance to the radial load of the regions 108, 109, 110 and 112, 113, 114, 115 can be adjusted by, for example, varying radial or axial thickness, or the overall size and shape, of the rings 106, varying the material of the rings 106, varying the spacing between the rings 106, providing the recesses 111 or rings 106 with other elements influencing the strength of the regions 108, 109, 110 and 112, 113, 114, 115, or a combination of the above.
In the embodiment of
The gripper elements 116 and the sealing elements 118 may be made, for example, from metal, ceramics, elastomeric or composite material. Other materials such as, for example, syntactic foam may improve sealing performance of the sealing elements 118 by providing potential extra volume for the host tubular member 102 to expand between the annular rings 106 and increase the interface pressure between the host tubular member 102, the sealing element 118 and the second tubular member.
The sealing elements 118 are profiled in an appropriate way to create a seal between the sealing elements 118 and the host tubular member 102 and the sealing elements 118 and the second tubular member 102. The sealing elements 118 can be configured to engage the host tubular member 102 via an interference fit.
In
If a hydraulic expansion tool is used, the rings 106 can be profiled or channelled (not shown) to facilitate fluid expulsion.
The host tubular member 102 could be any sort of tubing used downhole, for example, casing, liner or production tubing, etc. which needs to be expanded against another larger diameter tubing and can therefore be the same sort of tubing as used elsewhere in the tubing string. In any event, the host tubular member 102 will likely be at least as strong as the rest of the tubing string such that it at least matches the burst, collapse and axial load requirements for the tubing string as a whole.
Whilst specific embodiments of the present invention have been described above, it will be appreciated that modifications are possible within the scope of the present invention. The outer tubular sleeve may have a profile to define further annular regions having differing resistance to the radial load in addition to the reinforcing annular members. Additionally, the tubular members may be expandable tubular members where the expandable portion is placed within the second tubular member through a threaded connection i.e. the pin section, with the pin section comprising one or more reinforcing annular members mounted around the expandable connection.
Number | Date | Country | Kind |
---|---|---|---|
GB1212053.1 | Jul 2012 | GB | national |
GB1300442.9 | Jan 2013 | GB | national |