The present invention lies in the field of well drilling.
It more particularly relates to a radially expandable metal tubular element having on its outer surface a series of spaced apart, annular sealing modules.
The invention also concerns a device to isolate part of a wellbore comprising a pipe provided on a section of its outer surface with at least one of the aforementioned expandable tubular elements.
Finally the invention concerns a method for the sealed applying of the aforementioned isolating device against the wall of a wellbore or casing placed inside this wellbore.
The invention can be applied to the tubing of a vertical or horizontal wellbore.
This second wellbore configuration has been given more general use in recent years further to new extraction techniques and in particular, but not limited thereto, hydraulic fracturing techniques.
The operating of wellbores, whether vertical or horizontal, requires the sealing of some regions of the wellbore in relation to others, for example to delimit an area inside which it will later be possible to conduct operations.
To illustrate the state of the art in the matter appended
In practice this base pipe BP also comprises a vertical upstream end which leads into the surface of the wellbore, and a curved intermediate portion to connect the vertical part with the horizontal part (these not being illustrated for reasons of simplification).
It is a tubular pipe formed of several sections placed end to end so as to form a completion.
In the two aforementioned Figures, the pipe BP is positioned in an open wellbore A whose surface is as drilled.
However it can easily be envisaged that A designates a metal tube (casing) in which it is intended to conduct operations.
Against the outer surface of this base pipe BP and on a portion thereof there extends a cylindrical or approximately cylindrical jacket C whose opposite ends are sealingly secured to the outer surface of the pipe, for example via rings B. This jacket is preferably in metal.
At least one opening O is arranged in the wall of the base pipe BP to cause its inner space to communicate with the annular space arranged between the wall of the base pipe BP and the jacket C.
In the appended Figures only one opening O is illustrated. However it is possible to have a higher number of openings e.g. four or six.
Still as known per se the jacket C is covered over all or part of its length with a layer of elastically deformable material e.g. elastomer which forms an annular sealing <<web>> D a few millimetres thick.
In
As shown in
By so doing the web D of elastomer material comes into contact with the inner wall A of the wellbore or casing.
By then applying an overpressure ΔP, so that the overall pressure becomes P1+ΔP, the sealing web D is compressed against the wall thereby sealingly isolating the annular spaces EA1 and EA2 arranged either side of the jacket C.
When the pressure is lowered inside the base pipe BP for return to initial pressure P0, the diameter of the jacket C tends to reduce slightly on account of elastic return. This geometric modification must be offset by the sealing layer D to maintain proper isolation between the aforementioned annular spaces.
The reference Z in
This overpressure may be in the order of 50 to 100 bars.
After release of the pressure (return to initial pressure P0) and hence after elastic return of the jacket C, it is then possible that there is no longer any contact between the inner wall of the wellbore and the web of material D, thereby leaving a communication space j between the aforementioned annular spaces EA1 and EA2.
Under these conditions no satisfactory seal is obtained.
It has also been proposed not to use a continuous web D of sealing material but a series of annular sealing strips spaced apart as described in document U.S. Pat. No. 6,640,893 and illustrated in appended
When considering the cross-section of these sealing strips E it can be seen that they are separated from one another by annular spaces F.
Most of the time the jacket C is expanded even though the well is filled with water which means that this liquid is trapped between the sealing strips in the spaces F.
This liquid being scarcely compressible, the pressure ΔP is trapped between the sealing strips E and the fluid can no longer be evacuated.
The same phenomenon of defective sealing is then observed as described above in connection with
Other techniques for deforming an expandable jacket have been proposed.
For example document U.S. Pat. No. 7,370,708 describes a device comprising not a sealing layer in elastomer but metal lips directly secured to the expandable jacket.
On expansion of the jacket which is obtained using a mandrel sliding longitudinally, these lips are plastically deformed in turn against the wall. The low elastic return of these lips is not sufficient to offset the elastic return and reduction in diameter of the actual jacket, which leaves a communication space between the two annular spaces EA1 and EA2.
Also, document U.S. Pat. No. 7,070,001 relates to sealing lips secured to an expandable jacket and parallel to the axis thereof. These are coupled to sealing layers in inflatable elastomer.
The described jacket is deformed by a rotating tool system with rollers.
It will be noted that the two above-mentioned devices do not allow an annular isolating device to be obtained wherein an expandable jacket C is arranged around a base pipe BP.
It is therefore the objective of the invention to solve the aforementioned disadvantages of the prior art and to provide a metal tubular element which is radially expandable via hydroforming, equipped on its outer surface with a series of annular sealing modules which fully meet their function when applied to the walls of a casing or wellbore.
This sealing function must be ensured irrespective of the liquid or gaseous medium in which expansion takes place.
In cases in which this expandable tubular element is applied to the forming of a device to isolate part of a wellbore, the annular sealing modules must also ensure their function when a pressure is applied in the annular space EA1 or EA2 existing between two successive devices.
Still for this same application of forming an isolation device, a further objective of the invention is to allow the progressive application of the sealing modules against the wall from the centre outwards, so as to expel any water which may be contained in the annular space between the wall of the wellbore and the base pipe BP.
For this purpose the invention concerns a radially expandable metal tubular element having on its outer surface a series of spaced apart sealing modules.
Conforming to the invention, each sealing module comprises two annular metal abutments between which there are inserted an annular seal and two anti-extrusion rings, the seal being positioned between the two anti-extrusion rings and the two metal abutments being secured against the outer surface of said tubular element, the two anti-extrusion rings are made in elastically and plastically deformable material and are in one or two parts, and the two anti-extrusion rings and/or seal comprise at least two opposite facing bevelled surfaces capable of sliding relative to one another under the effect of axial movement of the said seal, so as to cause radial outward displacement of one of the anti-extrusion rings or at least one of the two parts thereof.
According to other advantageous, non-limiting characteristics of the invention, taken alone or in combination:
The invention also concerns a device to isolate part of a wellbore.
According to the invention it comprises a pipe provided over a section of its outer surface with at least one metal tubular element such as described above, the opposite ends of this tubular element being secured to the said outer surface of the pipe so as to delimit an annular space between the outer surface of the pipe and this tubular element, the wall of the said pipe having at least one opening allowing it to communicate with said annular space, the metal tubular element being radially expandable so that over part of its length with the exception of its end parts it is sealingly applied against the wall of the wellbore.
According to other characteristics:
The invention also concerns a method for the sealed applying of the aforementioned tubular element against the wall of a wellbore or casing placed inside this wellbore, this element being previously positioned inside the said wellbore or said casing.
This method comprises the following steps:
Finally the invention relates to the method for the sealed applying of the aforementioned device against the wall of a wellbore or casing placed inside this wellbore. In addition to above steps a) to c), the method comprises the following additional step:
Other characteristics and advantages of the invention will become apparent from the description given below with reference to the appended drawings which by way of non-limiting indication illustrate several possible embodiments.
In these drawings:
The tubular element 1 conforming to the invention will now be described in connection with
However, in these
These elements can only be seen in their entirety in
A first embodiment of the invention will now be described with reference to
The metal tubular element 1 is radially expandable by hydroforming or using an inflatable tool.
The annular sealing module 2 comprises two annular metal abutments 21 between which there are inserted an annular seal 22 and two anti-extrusion rings 23. The annular seal 22 is placed between the two anti-extrusion rings 23.
The two annular metal abutments 21 are secured to the outer surface 10 of the metal tubular element 1, for example by welding.
The element 1 and the abutments are in steel for example. They are capable of plastic deformation.
The seal 22 is advantageously made in elastomer. The anti-extrusion rings 23 are made in an elastically and plastically deformable material for example e.g. polytetrafluoroethylene (PTFE) or poly(etheretherketone) (PEEK).
The cross-section of the annular seal 22 is in the shape of an isosceles trapezoid whose long base 221 is in contact with the outer surface 10 of the tubular element 1. The opposite surface or “short base” carries reference 222.
The two sides of the trapezoid 220 form the two bevelled lateral surfaces of the seal. Each annular anti-extrusion ring 23 in its cross-section is in the shape of a pentagon whose inner side 232 is positioned against the outer surface 10 of the tubular element 1.
The two lateral sides of the pentagon on either side of side 232 and which correspond to the lateral surfaces of the anti-extrusion ring carry references 230 for the surface facing the seal 22 and 231 for the surface facing the metal abutment 21.
The two outer sides respectively carry reference 233 for the side close to side 231 and reference 235 for the side close to side 230.
Since the height of the abutments 21 is lower than the height of the seal 22, side 233 lies in the same horizontal plane as the upper surface of the abutment 21, whilst side 235 lies at an angle to make up the difference in level with the seal 22.
The end of each anti-extrusion ring 23 facing the seal 22 therefore has a pointed tip 234.
Finally the cross-section of the annular abutment is in the shape of a rectangular trapezoid whose long base 211 is in contact with the outer surface 10 of element 1 and whose opposite short base carries reference 212.
The lateral bevelled surface of the abutment 21 facing the ring 23 is referenced 210.
The two bevelled lateral surfaces 220 and 230 are arranged opposite one another and lie at the same angle α1 relative to the outer surface 10 of the tube 1. This angle α1 is between 20° and 70°. Preferably it is 45°.
The opposite facing surfaces 210 and 231 lie at a same angle β relative to the outer surface 10 of the tube 1.
Angle β is preferably between 20° and 70°. More preferably it is 45°.
Angles α1 and β are not necessarily identical.
A second embodiment of the sealing module referenced 2′ is now described in connection with
This variant of embodiment solely differs from the preceding embodiment through the shape of the cross-section of each of the elements of this module 2′, namely the seal 25, annular abutments 24 and anti-extrusion rings 26 made in two parts 26a and 26b.
Each metal abutment 24 has a rectangular cross-section with one surface 240 facing the ring 26, one surface 241 in contact with the element 1 and an opposite surface 242.
The seal 25 has a rectangular cross-section. Its surface in contact with the tube 1 is referenced 251, its opposite surface 252 and its two side surfaces 250.
Finally each anti-extrusion ring 26 comprises two parts 26a, 26b in the shape of a rectangular trapezoid. These two parts are arranged head to tail so that their respective angled (bevelled) surfaces 260a and 260b face one another.
Also, part 26b, located close to the abutment 24, has one lateral surface 261b (opposite to 260b), a short base 262b arranged against the outer surface 10 of the tube 1 and a long base 263b.
Part 26a comprises a lateral surface 261a, opposite to 260a, a long base 262a in contact with the outer surface 10 and a short base 263a.
Other shapes can also be envisaged for the abutments, seal and anti-extrusion rings.
A description of the device 3 for isolating part of a wellbore conforming to the invention will now be given with reference to
This device comprises a pipe 4 provided over a section of its outer surface with at least one metal tubular element 1 such as described in the foregoing.
In the Figures this element 1 is illustrated equipped with sealing modules 2. Evidently these could also be the above-described modules 2′.
Similar to the description given for the state of the art in connection with
At least one opening 40 is arranged in the wall of the pipe 4 to cause its inner space to communicate with the annular space 5 arranged between the wall of the pipe 4 and the tubular element 1.
The pipe 4 also has at least one through opening 41 arranged between two isolating devices 3 so as to place its inner space in communication with the outside.
These through openings 41 can be obturated via mobile shutoff means 6.
A variant of the device 3 is illustrated in
A second radially expandable, metal tubular element 1′ is arranged inside the element 1 previously described.
The two elements 1, 1′ are coaxial and are retained at their respective ends by rings 30. The second tubular element 1′ does not carry any sealing module 2 or 2′.
There is at least one orifice 11 which places the annular space 51, arranged between the outer surface of element 1′ and the inner surface of element 1, in communication with one of the annular spaces EA1 or EA2, According to the variant of embodiment illustrated in
The method for sealed applying of the aforementioned isolating device 3 against the wall A of a wellbore or casing positioned inside this wellbore, will now be described with reference to
In
As illustrated in
The sealing modules 2 located in the centre of the tubular element 1 come into contact with the wall A.
At this stage and as illustrated in detail in
As illustrated in
By so doing, the bevelled surfaces 220 of the seal 22 push the anti-extrusion rings 23 to the right and left. This results from sliding of the surfaces 220 and 230 relative to one another. The same applies to the bevelled surfaces 210 and 231, with the result that the two anti-extrusion rings 23 expand radially outwards in the direction of the wall A.
In
Any water contained between the wall A and the device 3 continues to be expelled upstream and downstream (arrows F).
As illustrated in
When pressure P1+ΔP1 is applied, the seal 25 becomes compressed. By so doing it applies axial thrust on the surfaces 261a of parts 26a of the anti-extrusion ring. The bevelled surfaces 260a and 260b slide relative to one another so that the axial displacement of part 26a of the anti-extrusion rings causes radial displacement of part 26b in the direction of the wall A of the wellbore.
After release of the pressure inside the tubular element 1, it can be seen that parts 26b of the anti-extrusion rings move slightly radially downwards in the direction of the tubular element 1 (see
In the particular case of the embodiment in
After return to initial pressure PO and clearing of the openings 41, if a fluid under pressure is applied inside the annular space EA1, this pressure is communicated to inside the space 51 via the orifice(s) 11.
The space 52 arranged between the pipe 4 and the second tubular element 1′ has its volume gradually reduced and this second tubular element 1′ is pushed against the pipe 4. Thereby, either side of the first tubular element 1, the same balanced pressure is obtained which promotes continuation of the seal and the risk of collapse of the first tubular element 1 no longer exists.
Similarly, advantageously, the metal abutments 21, and/or the annular seals 22, 25 of the sealing modules 2 or 2′ positioned in the central portion of the tubular element 1 are advantageously narrower and/or thinner than the metal abutments 21, 24 of the sealing modules positioned at the ends of the tubular element.
These two above-mentioned particular arrangements are intended to reinforce radial deformation of the tubular element 1 so that its central portion is first applied against the wall A, and the modules on either side are progressively applied against the wall A from the centre towards the ends of the element 1,
Once the sealing devices 3 are placed in the position illustrated in
As illustrated in
The bevelled surface 220 slides in relation to the surface 230 of the ring 23 and via a <<wedge>> effect lifts up and causes the outward radial displacement of the anti-extrusion ring 23. The travel of this ring is retained by the abutment 21. The tip 234 fully cooperates with the shape of the seal 22 to prevent the extrusion thereof.
In
Number | Date | Country | Kind |
---|---|---|---|
1358224 | Aug 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/066702 | 8/4/2014 | WO | 00 |