The present disclosure relates generally to the field of drilling and processing of wells, and, more particularly, to a tubular engaging device and method for using the tubular engaging device.
In conventional oil and gas operations, a well is typically drilled to a desired depth with a drill string, which includes drillpipe, drill collars and a bottom hole drilling assembly. The drill string may be turned by a rotary table and kelly assembly or by a top drive. A top drive typically includes a quill, which is a short length of pipe that couples with the upper end of the drill string, and one or more motors configured to turn the quill. The top drive is typically suspended from a traveling block above the rig floor so that it may be raised and lowered throughout drilling operations.
In conventional operations, to add a length of tubular (e.g., drillpipe or drill collar) to the drill string, an elevator is coupled with the tubular to facilitate hoisting the tubular from the rig floor. The tubular is aligned with the drill string and lowered onto the drill string. An iron roughneck at the rig floor may be used to rotate the tubular and attach the tubular to the drill string. However, it is now recognized that using an iron roughneck to add each new length of tubular to the drill string may be time consuming and expensive. Accordingly, it is now recognized that there exists a need for a device and method for connecting tubulars to drill strings without the use of an iron roughneck.
In accordance with one aspect of the present disclosure, a device for a top drive drilling system includes a sub having a first coupling end configured to mate with the top drive drilling system and a second coupling end configured to mate with a tubular. The device also includes a movable sleeve disposed around at least a portion of the sub. The movable sleeve is configured to be selectively disposed around the tubular by sliding axially along the sub. The device includes a plurality of engagement features extending inwardly from an inner circumference of the movable sleeve. When the movable sleeve is disposed around the tubular, the plurality of engagement features are configured to engage the tubular when the movable sleeve is rotated in a first direction and to not engage the tubular when the movable sleeve is rotated in a second direction.
In accordance with another aspect of the disclosure, a device for a top drive drilling system includes a movable sleeve configured to be disposed around at least a portion of a sub. The movable sleeve is configured to be selectively disposed around a tubular by sliding axially along the sub. The device also includes a plurality of engagement features extending inwardly from an inner circumference of the movable sleeve. When the movable sleeve is disposed around the tubular, the plurality of engagement features are configured to engage the tubular when the movable sleeve is rotated in a first direction and to not engage the tubular when the movable sleeve is rotated in a second direction.
Present embodiments also provide a method for coordinating tubulars in a top drive drilling system. In one embodiment, the method includes sliding a movable sleeve axially along a sub. The method also includes disposing a plurality of engagement features around a tubular. The plurality of engagement features extend inwardly from an inner circumference of the movable sleeve. The method includes rotating the plurality of engagement features around the tubular in a first direction. The method also includes engaging the plurality of engagement features with the tubular to cause the plurality of engagement features to apply a frictional force to the tubular. The frictional force is configured to cause the tubular to rotate in the first direction.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
The present disclosure provides a novel coupling device for a top drive drilling system and a method that can be used in drilling operations. The presently disclosed techniques allow for tubulars to be coordinated (e.g., assembled, disassembled, etc.) using a top drive having the coupling device attached to the top drive. Further, the tubulars may be coordinated using power from the top drive without the use of an iron roughneck. The coupling device may include a movable sleeve disposed around a portion of a sub. During operation, the sub is coupled to the top drive (e.g., to the quill of the top drive) and the sub may interlock or otherwise engage the movable sleeve to translate motion from the top drive via the sub to the movable sleeve. Engagement features extend inwardly from the movable sleeve and may be engaged with a tubular by extending a portion of the movable sleeve over the tubular and rotating the movable sleeve (e.g., using the top drive to rotate the coupling device) and thereby rotating the engagement features around the tubular. When the engagement features are engaged with the tubular, the engagement features may provide sufficient torque to rotate the tubular to attach the tubular to a drill string or to detach the tubular from the drill string.
Turning now to the drawings,
In certain embodiments, the top drive drilling system 40 may include elevators for positioning the tubular 36 over the drill string 28 and coupling the tubular 36 with other features. For example, the elevators may be used to hoist the tubular 36 up a pipe ramp 48 and through a V-door 50 to a position over the drill string 28. After the tubular 36 is positioned over the drill string 28, the sub assembly 38 may be used to couple the tubular 36 to the drill string 28. Further, the sub assembly 38 may be used to decouple the tubular 36 from the drill string 28 after it has previously been coupled to the drill string 28. The sub assembly 38 may include engagement features that apply a torque to the tubular 36 when the sub assembly 38 is rotated in a first direction. The torque may be applied to the tubular 36 by the engagement features gripping the tubular 36 and causing a rotational force to be transferred from the top drive drilling system 40 to the tubular 36 when the sub assembly 38 is rotated in the first direction. When the sub assembly 38 is rotated in a second direction, the engagement features do not engage the tubular 36. For example, the engagement features may slip, or no longer grip the tubular 36.
To couple the tubular 36 to the drill string 28, a sleeve of the sub assembly 38 may be lowered around the upper end of the tubular 36. Thereafter, the sub assembly 38 is rotated in the first direction until the tubular 36 is coupled to the drill string 28. As will be appreciated, while the sub assembly 38 is applying rotational force to the tubular 36, the slips 32 are used to hold the drill string 28 in place and to keep the drill string 28 from rotating. After the tubular 36 is coupled to the drill string 28, the sub assembly 38 is rotated in the second direction to disengage the engagement features from the tubular 36. The sub assembly 38 may be raised off of the upper end of the tubular 36 after the tubular 36 is coupled to the drill string 28. Thus, the tubular 36 may be added to the drill string 28 using power from the top drive drilling system 40 without using an iron roughneck.
It should be noted that the illustration of
The sub assembly 38 also includes a movable sleeve 68 disposed around a portion of the sub 56. The movable sleeve 68 includes one or more splines 70 that slidably engage one or more grooves in the sub 56. The splines 70 allow the movable sleeve 68 to move axially along the sub 56 and allow for transfer of motion from the sub 56 to the movable sleeve 68. For example, the movable sleeve 68 may use the splines 70 to slide between the first coupling end 58 and the second coupling end 60. As such, the movable sleeve 68 may be selectively disposed around the tool joint 66 of the tubular 36 and a portion of the sub 56, simply around the sub 56, or any of various different devices. In certain embodiments, the movable sleeve 68 may be positioned manually, while in other embodiments the movable sleeve 68 may be positioned using automation features that will be described in more detail below in relation to
In the illustrated embodiment, a first sealing device 72 (e.g., o-ring, gasket, etc) is disposed between the sub 56 and the movable sleeve 68. As illustrated, the first sealing device 72 may be disposed between the second coupling end 60 of the sub 56 and the movable sleeve 68. In certain embodiments, the first sealing device 72 may disposed in a circumferential groove 73 in the movable sleeve 68 to hold the first sealing device 72 in place. In other embodiments, the first sealing device 72 may be disposed in a groove in the coupling end 60 to hold the first sealing device 72 in place. A second sealing device 74 (e.g., o-ring, gasket, etc) is disposed within a lower portion of the movable sleeve 68 and is used to provide a seal between the movable sleeve 68 and the tubular 36 when the movable sleeve 68 is disposed around the tubular 36. As such, the first sealing device 72 and the second sealing device 74 may be used together to provide a pressure seal (e.g., for pumping mud through the sub 56 and into the tubular 36).
The movable sleeve 68 includes an engagement assembly 76 with engagement features 78 (e.g., sprag elements, cam-like features, or gripping elements) extending inwardly from an inner circumference 80 of the movable sleeve 68. When the movable sleeve 68 is disposed around the tubular 36, the engagement features 78 of the engagement assembly 76 are arranged to engage the tubular 36 (e.g., grip the tubular 36) when rotated in a first direction and to not engage the tubular 36 (e.g., slip over the surface of the tubular 36), or to disengage the tubular 36 (e.g., no longer grip the tubular 36 if previously gripped), when rotated in a second direction. For example, the engagement features 78 may apply a frictional rotation force or torque to the tubular 36 when the engagement assembly 76 is rotated in the first direction to grip the tubular 36. When the engagement assembly 76 is rotated in the second direction, the engagement features 78 may slip, or no longer grip the tubular 36. When frictional force is applied, the applied frictional force may be used to rotate the tubular 36, such as for connecting the tubular 36 to the drill string 28 or disconnecting the tubular 36 from the drill string 28. As will be appreciated, the engagement assembly 76 may be rotated by rotating the sub assembly 38. Further, the top drive drilling assembly 40 may be used to rotate the sub assembly 38. In certain embodiments, the engagement assembly 76, the engagement features 78, or a subset of the engagement features 78 may be reversible so that the engagement features 78 engage the tubular 36 when rotated in the second direction and do not engage the tubular 36 when rotated in the first direction.
As illustrated in
As illustrated, the sub assembly 38 may include a motor 86 to axially slide the movable sleeve 68. Further, a controller 88 may be electrically and/or communicatively coupled to the motor 86. Thus, the controller 88 may send control signals and/or power signals to the motor 86 to cause the motor 86 to slide the movable sleeve 68. By using the motor 86 the movable sleeve 68 may slide to a number of positions without an operator manually positioning the movable sleeve 68. As will be appreciated, in certain embodiments, an actuator or other device may be used instead of the motor 86 to slide the movable sleeve 68.
Conversely, the engagement assembly 76 may be rotated in the second direction 98. When the engagement assembly 76 is rotated in the second direction 98, the engagement elements 78 may slide around the tubular 36 without applying a sufficient frictional force to rotate the tubular 36. Further, if the engagement elements 78 were previously engaged with the tubular 36, rotating the engagement assembly 76 in the second direction 98 may disengage the engagement elements 78 from the tubular 36.
As illustrated, the engagement elements 78 may be coupled to the engagement assembly 76 using hinges 100. The hinges 100 provide a rotational axis for the engagement elements 78. As will be appreciated, the hinges 100 may be formed to limit the range of movement of the engagement elements 78 in a particular direction, which may assist with engagement based on rotational direction. In certain embodiments, the engagement elements 78 may include geometric characteristics (e.g., generally straight, curved, etc.) and coupling features (e.g., hinges) that enable them to be reversed. For example, the engagement elements 78 may be reversed as shown in
During a tripping out sequence using the sub assembly 38, the drill string 28 and the tubular 36 are positioned at a proper elevation, at block 112. For example, the elevator of the top drive drilling system 40 may close around the stump 34 of the drill string 28. The slips 32 are released to allow the drill string 28 to be moved. The elevator pulls the drill string 28 to the proper elevation and the slips 32 are applied to hold the drill string 28 in place. At block 114, the top drive drilling system 40 is lowered to set the slips 32 and the movable sleeve 68 of the sub assembly 38 is lowered to position the engagement assembly 76 around the tool joint 66 of the uppermost tubular 36. Then, at block 116, the top drive drilling system 40 is rotated to cause the engagement assembly 76 of the movable sleeve 68 to engage the tubular 36. In certain embodiments, the top drive drilling system 40 will rotate in a reverse, counter-clockwise, or second direction 98 to engage the engagement assembly 76 with the tubular 36. As will be appreciated, the engagement features 78 may be arranged as illustrated in
A tripping in sequence also uses the sub assembly 38 and may be performed in a similar manner to the tripping out sequence. Specifically, the drill string 28 is positioned at a proper elevation, at block 112. For example, the elevator of the top drive drilling system 40 opens from being around the stump 34 of the drill string 28. The top drive drilling system 40 is raised up to an elevation where the tubular 36 may be thrown in. The elevator closes around the tubular 36 and positions the tubular 36 within the stump 34 (e.g., stabs the tubular 36 into the stump 34). At block 114, the top drive drilling system 40 is lowered causing the movable sleeve 68 of the sub assembly 38 to position the engagement assembly 76 around the tool joint 66 of the tubular 36. Then, at block 116, the top drive drilling system 40 is rotated to cause the engagement assembly 76 of the movable sleeve 68 to engage the tubular 36. In certain embodiments, the top drive drilling system 40 will rotate in the forward, clockwise, or first direction 96 to engage the engagement assembly 76 with the tubular 36. As will be appreciated, the engagement features 78 may be arranged as illustrated in
In one embodiment, during operation of the top drive drilling system 40 with the sub assembly 38 attached, the movable sleeve 68 may be raised so that the engagement assembly 76 will not surround the tool joint 66 of the tubular 36. The top drive drilling system 40 is rotated in the forward, or first direction 96, then lowered onto the tool joint 66. This causes the second coupling end 60 of the sub 56 to engage with the coupling end 64 of the tubular 36. After the connection between the sub 56 and the tubular 36 is made up, drilling operations may be performed. Thus, using the sub assembly 38, tripping in, tripping out, and drilling operations may be performed, without the use of an iron roughneck.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4762187 | Haney | Aug 1988 | A |
4821814 | Willis et al. | Apr 1989 | A |
6311792 | Scott et al. | Nov 2001 | B1 |
6668684 | Allen et al. | Dec 2003 | B2 |
7140443 | Beierbach et al. | Nov 2006 | B2 |
7377324 | Beierbach et al. | May 2008 | B2 |
7752945 | Bouligny, Jr. | Jul 2010 | B2 |
7770654 | Beierbach et al. | Aug 2010 | B2 |
7793729 | Nikiforuk | Sep 2010 | B2 |
8042626 | Slack | Oct 2011 | B2 |
8074711 | Ellis et al. | Dec 2011 | B2 |
8230933 | Snider et al. | Jul 2012 | B2 |
20050188793 | Cherry | Sep 2005 | A1 |
20070131416 | Odell et al. | Jun 2007 | A1 |
20090065223 | Bouligny, Jr. | Mar 2009 | A1 |
20090095489 | Roodenburg et al. | Apr 2009 | A1 |
20110114308 | Nikiforuk et al. | May 2011 | A1 |
20110132594 | Slack | Jun 2011 | A1 |
20110259577 | Hughes et al. | Oct 2011 | A1 |
Entry |
---|
PCT International Search Report & Written Opinion for International Applicaiton No. PCT/US2012/068022 mailed Dec. 20, 2013. |
Number | Date | Country | |
---|---|---|---|
20130153244 A1 | Jun 2013 | US |