Tubular junction for tubing pump

Information

  • Patent Grant
  • 6322331
  • Patent Number
    6,322,331
  • Date Filed
    Wednesday, November 10, 1999
    24 years ago
  • Date Issued
    Tuesday, November 27, 2001
    22 years ago
Abstract
A well pump assembly has a tubular junction having a main tube and a bypass tube. An electric motor and seal section hang below the tubular junction in the main tube. The motor is powered by a power cable that extends alongside the tubing to the surface. The motor has an upper end with a drive shaft coupling. The pump for the motor is lowered through the production tubing on a wireline, wire rope or coiled tubing. The pump has a lower end which has a driven shaft coupling that makes up in stabbing engagement with the drive shaft coupling when the pump reaches the motor. The driven shaft coupling includes a guide that slides into a coupling housing. Orientating keys orient the guide and lock it from rotation. The bypass tube of the tubular junction may receive workover tools that are diverted by a wireline tool.
Description




TECHNICAL FIELD




This invention relates in general to a hydrocarbon production well, and in particular to a well utilizing a centrifugal pump operated by a submersible electric motor, wherein the pump is retrievable through a main tube of a tubular junction. Wire line tools may be inserted through a bypass tube of the tubular junction.




BACKGROUND ART




Electrical submersible well pumps for deep wells are normally installed within casing on a string of tubing. Usually the tubing is made up of sections of pipe screwed together. Coil tubing deployed from a reel may also be used. The motor is supplied with power through a power cable that is strapped alongside the tubing. The pump is typically located above the motor, is connected to the lower end of the tubing, and pumps fluid through the tubing to the surface. One type of a pump is a centrifugal pump using a plurality of stages, each stage having an impeller and a diffuser. Another type of pump, for lesser volumes, is a progressing cavity pump. A progressing cavity pump utilizes a helical rotor that is rotated inside an elastomeric stator that has double helical cavities. The stator is located inside a metal housing.




Periodically, the pump assembly must be pulled to the surface for repair or replacement. This involves pulling the tubing, which is time consuming. A workover rig is necessary for production tubing, and a coiled tubing unit is needed to pull coiled tubing. Often, the electrical motor needs no service, rather the service needs to be performed only on the pump. Sometimes the only change needed is to change the size of the pump without changing the size of the motor. However, the motor, being attached to the lower end of the pump, is also pulled along with the tubing. Damage to the power cable is not uncommon when pulling the tubing.




Also periodically, well workovers must be performed. In some prior art wells, wire line tools are routed through a main tube of a Y-tool, while the pump assembly is positioned in the bypass tube of the Y-tool. However, in these wells, the motor and pump must be pulled together, thereby subjecting the power cable to damage.




Therefore, a pump assembly is needed that permits a pump to be retrieved without pulling the motor, yet allows workover tools to be used for well workovers.




SUMMARY OF INVENTION




In this invention, the motor is secured to the lower end of the tubing. A power cable to the motor is strapped alongside the tubing. The centrifugal pump, however, is sized to be lowered through the tubing. The pump has a driven shaft extending downward from it that mates with a drive shaft extending upward from the motor. When the pump reaches the motor, the driven shaft will stab into the drive shaft.




A special Y-tool or tubular junction is provided having a main leg and an offset leg. The seal section and motor are secured to the main leg, thereby allowing the offset leg of the tubular junction to be used for wireline operations. The tubular junction supports or incorporates an eye and locking apparatus that mates with the bottom of the through tubing conveyed (TTC) pump or intake. The tubular junction incorporates intake passages in the main leg that allow well fluid to access the pump intake.




The bypass tube is used for well workovers or other operations which do not require pulling the tubing. It will be necessary to first remove the pump with a quick and inexpensive method such as wireline. After removal of the pump, a wireline-deployed tool may be necessary to divert the workover tools into the bypass tube, because the bypass tube is offset from the production tubing or liner. This wireline tool will have a means of retaining the tool as it lands in position so that the workover tool goes in the correct direction.




The upper end of the pump is designed for engagement by a running and retrieving tool. The running and retrieving tool is used to lower the pump through the tubing and retrieve it. The pump may be secured to wireline, wire rope or coiled tubing which inserts through the production tubing. The pump pumps well fluid up through the tubing.




When it is desirable to change out or repair the pump, the operator lowers a running tool through the production tubing and latches it to the pump. The operator pulls the pump, leaving the motor in place. Subsequently, the running tool lowers the repaired or replacement pump back through the tubing into engagement with the motor.




The electric motor assembly is mounted to a coupling housing which is secured to the lower end of the tubing. The coupling housing has an anti-rotation key within its bore. The drive shaft of the electric motor assembly extends into the coupling housing. The lower end of the pump assembly driven shaft is located within a tubular guide. The guide extends slidingly into the coupling housing as the pump assembly is being lowered. The guide rotatably receives the lower portion of the drive shaft. The guide has an engagement member on its exterior which engages the internal anti-rotation member in the bore of the coupling housing.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a partially exploded schematic view of a pump system in accordance with this invention.





FIG. 2

is an enlarged sectional view, of the tubular junction and area surrounding the pump/motor interface of the invention of FIG.


1


.





FIG. 3

is an enlarged sectional view, of the tubular junction and area surrounding the pump/motor interface of the invention of

FIG. 1

, wherein the pump and motor are disengaged.





FIG. 4

is a sectional view of a stage of a centrifugal pump used in one embodiment of the invention.











BEST MODE FOR CARRYING OUT THE INVENTION




Referring to

FIGS. 1

,


2


, and


3


, a string of production tubing


11


extends from the surface into a cased well (not shown). Production tubing


11


is a conduit made up of sections of pipe, for example four inches in diameter, screwed together. Alternatively, production tubing


11


may be coiled tubing. A coupling housing


13


is located at and forms the lower end of tubing


11


. Coupling housing


13


is a tubular member with approximately the same diameter as tubing


11


and is preferably connected to the tubing by threads.




An electric motor assembly


15


is secured to coupling housing


13


by bolts


17


. Motor assembly


15


includes a seal section


19


, and optionally a gear reducer


20


, which is mounted to an A.C. electric motor


21


(FIG.


1


). Seal section


19


equalizes hydrostatic pressure with pressure of lubrication in the motor and seals around the drive shaft extending from the motor


21


. Seal section


19


is of a conventional design.




Tubular junction, such as Y-tool


22


has a main tube


23


and a bypass tube


24


. Bypass tube


24


joins main tube


23


above seal section


19


. A three-phase power cable


25


connects to motor


21


and extends alongside tubing


11


to the surface for delivering power. Motor


21


typically operates at about 3600 rpm, which is reduced by gear reducer


20


to a lower speed if a gear reducer is employed. Seal section


19


seals well fluid from the interior of motor


21


and also equalizes pressure differential between lubricant in motor


21


and the exterior.




As shown in

FIGS. 2 and 3

, a drive shaft


27


extends upward from and is driven by motor


21


. Drive shaft


27


extends through seal section


19


and has a splined end


29


which mates with a drive shaft coupling


31


. Drive shaft coupling


31


is a short shaft that forms the upper end of drive shaft


27


. Drive shaft coupling


31


has a splined upper end


33


and is carried within bore


35


of coupling housing


13


. Drive shaft coupling


31


is rotatably supported within bore


35


by bushings


37


.




Referring again to

FIG. 1

, a pump


39


is driven by motor


21


. Pump


39


may be a progressing cavity pump, or a centrifugal pump. A progressing cavity pump has a metal rotor which has an exterior helical configuration. The rotor orbitally rotates within an elastomeric stator. The stator has double helical cavities located along its axis through which the rotor rotates. Gear reducer


20


is used if pump


39


is a progressive cavity pump.




Pump


39


may also be a centrifugal pump having a plurality of stages


40


(FIG.


4


). A conventional centrifugal pump stage


40


includes an impeller


41


having a hub


42


, a top shroud


43


, and a bottom shroud


44


. Pump stage


40


additionally includes a diffuser


45


having a diffuser bore


46


. If pump


39


is a centrifugal pump, a gear reducer


20


will not be used.




Tubular housing


47


is secured to a lower end of pump


39


and may be considered a part of pump


39


. A metal shaft


48


is located within housing


47


. If pump


39


is a progressing cavity pump, shaft


48


is flexible and orbits at its upper end and rotates in pure rotation at its lower end. Shaft


48


is connected on its upper end to pump


39


and may be considered a part of a driven shaft of pump


39


.




Shaft


48


has a driven shaft coupling


49


on its lower end. Driven shaft coupling


49


may be secured to shaft


48


by a pin (not shown). Driven shaft coupling


49


is a solid cylindrical member which has a cavity on its lower end containing a sleeve or receptacle


53


(

FIG. 3

) having splines (not shown) therein. Receptacle


53


has an upward extending shank


57


to secure receptacle


53


within the cavity of drive shaft coupling


49


by means of a pin. Receptacle


53


mates slidingly with splined upper end


33


of drive shaft coupling


31


.




A guide


61


surrounds driven shaft coupling


49


. Guide


61


is a tubular member or sleeve having an outer diameter for close reception within bore


35


of coupling housing


13


. Guide


61


has a bore through it which rotatably receives driven shaft coupling


49


. Guide


61


has threads


62


on its upper end which secure guide


61


to shaft housing


47


. Guide


61


also has three elongated slots


63


(only one shown) on its exterior spaced 120° apart. Slots


63


are sized to mate with three keys


65


. Keys


65


are stationarily mounted to coupling housing


13


and protrude radially inward into bore


35


. Keys


65


are also 120° apart from each other and serve to prevent rotation of guide


61


in coupling housing


13


.




Guide


61


has a tapered nose


67


for orienting and mating slots


63


with keys


65


when pump


39


is lowered into engagement with motor assembly


15


. Preferably, there are three tapered surfaces on nose


67


. Each tapered surface extends upward and leads to one of the slots


63


.




Referring again to

FIG. 1

, well fluid for pump


39


is drawn through perforations


71


in tubing


11


below pump


39


and through perforations


73


in tubular housing


47


. A packing sleeve


75


is positioned on an upper end of pump


39


, sealing the housing of pump


39


to the interior of tubing


11


. Packing sleeve


75


preferably has a GS fishing neck and packing bore thereon. V-type packing


77


is positioned within packing sleeve


75


. Packing


77


isolates the intake of pump


39


from its discharge. A check valve


79


is positioned above V-type packing


77


. A tubing joint or sand tube


81


is provided to collect sand in the well bore. V-type packing


77


seals off sand tube


81


to discharge from pump


39


. A second packing sleeve


83


is positioned above sand tube


81


. Second packing sleeve


83


preferably has a GS fishing neck and packing bore therein. Second V-type packing


85


is positioned above packing sleeve


83


to seal off sand tube


81


. Tubing packoff


87


is provided proximate V-type packing


85


. Tubing packoff


87


preferably has a GS fishing neck and a rubber element. Tubing stop


89


is frictionally fit into the top of tubing packoff


87


. Tubing stop


89


has slips to stop any upward movement of pump


39


. A full open flapper valve or retrievable flapper valve assembly


91


may be provided instead of a surface lubricator.




In operation, during initial installation, the operator will connect motor assembly


15


together including gear reducer


20


and seal section


19


. The operator connects motor assembly


15


to coupling housing


13


, and connects coupling housing


13


to the lower end of a string of tubing


11


. The operator then lowers the string of tubing


11


into the well to its desired depth. Power cable


25


is strapped alongside tubing


11


as tubing


11


is lowered into the well.




The operator then makes up the pump assembly including pump


39


, tubular housing


47


, packing sleeve


75


, v-type packing


77


, check valve


79


, tubing joint


81


, packing sleeve


83


, v-type packing


85


, tubing packoff


87


, tubing stop


89


and flapper valve


91


unless it was previously installed. The operator latches the pump assembly to a running tool (not shown). The running tool is fastened to a line, which may be wireline, wire rope or coiled tubing. The operator lowers the pump assembly through tubing


11


.

FIG. 3

shows guide


61


shortly before it stabs into engagement with drive shaft coupling


31


. Tapered surfaces on tapered nose


67


of guide


61


will contact keys


65


and rotate guide


61


an amount necessary to orient slots


63


with keys


65


. Receptacle


53


will slide over splined upper end


33


, engaging pump


39


with motor


26


.




The operator supplies power to power cable


25


, which causes motor


21


to rotate, which in turn rotates shaft


48


and impellers


41


of a centrifugal pump or a rotor for a progressing cavity pump. Well fluid is drawn in through intake perforations


71


and


73


. Well fluid pumps out of the upper end of pump


39


and flows upward through production tubing


11


to the surface.




When it is desired to change out pump


39


for repairs or otherwise, the operator lowers a running tool on a line back into engagement with the pump assembly. Pump


39


will move upward, bringing along with it shaft


48


and guide


61


as illustrated in FIG.


3


. Motor


21


will remain in place as the operator pulls the pump assembly to the surface. The operator replaces or repairs the pump assembly and reinstalls it in the same manner as described. When it is necessary to run workover tools into the well bore or to perform other downhole operations, a wireline tool may be used to direct the tools into the bypass leg


24


of the tubular junction


22


. Pump


39


must be removed to gain access to bypass leg


24


. Then a kickover tool (not shown) will be landed next to the entrance of bypass leg


24


. Wireline tools then may be lowered through tubing


11


and down bypass tube


24


. The wireline tool can be lowered below tubular junction


22


into the casing.




The invention has significant advantages. By leaving motor


21


in place and retrieving only pump


39


, the operation to change out pump


39


is much faster. In the case of production tubing, a workover rig need not be employed for pulling the tubing. Damage to power cable


25


is avoided as the production tubing will remain in place. Reducing the expense of changing out pump


39


reduces the cost of using a pump of this nature in the well. Guide


61


readily orients and stabs the lower end of pump


39


into engagement with drive shaft coupling


31


. By positioning pump


39


in main tube


23


of tubular junction


22


, rather than in bypass tube


24


of tubular junction


22


, pump


39


may be disengaged from motor


21


for change-out or repair. A wireline tool may be used to divert workover tools into bypass tube


24


to enable wireline operations without pulling the tubing.




The use of the tubular junction is advantageous for use in 9⅝ inch casing with pull/run and/or lost production costs. The pump and intake, which are subject to wear due to the well fluid, can be inexpensively changed out as a preventative maintenance measure. Pumps can be frequently evaluated and repaired to avoid damage to the seal section and motor. The seal section can have a hardened bearing installed in the top end to extend its life after moderate pump radial wear. Additionally, the seal section, motor and cable will have a much longer useful life. Pull/run and lost production costs can also be greatly reduced.




While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention. For example, although the junction is shown below the pump intake, it could be above the pump discharge. Further, the pump could be a progressing cavity type rather than a centrifugal type.



Claims
  • 1. A well pump assembly for mounting to a string of tubing extending into a well, comprising:a tubular junction adapted to be connected to a lower end of the string of tubing, the tubular junction having a main tube and a bypass tube that branches off of the main tube from said junction; a motor coaxial with the main tube of the tubular junction, the motor having a drive shaft; a pump having a driven shaft that releasably couples to the drive shaft, the pump being capable of being lowered into and retrieved through the string of tubing; and wherein the bypass tube is capable of receiving tools lowered from the surface through the string of tubing.
  • 2. The well pump assembly according to claim 1 wherein an upper end of the drive shaft of the motor is located below said tubular junction.
  • 3. The well pump assembly according to claim 1 wherein said bypass tube receives said tools while said pump is removed from the string of tubing.
  • 4. The well pump assembly according to claim 1 wherein the pump extends above the junction when the driven shaft is coupled to the drive shaft of the motor, thereby blocking access to the bypass tube.
  • 5. The well pump assembly according to claim 1 wherein the main tube of the tubular junction is perforated to allow well fluids to flow to the pump.
  • 6. The well pump assembly according to claim 1 wherein the pump is a centrifugal pump.
  • 7. The well pump assembly according to claim 1 wherein the pump is a progressive cavity pump.
  • 8. The well pump assembly according to claim 1 wherein the main tube of the tubular junction is adapted to be in axial alignment with the string of tubing.
  • 9. The well pump assembly according to claim 1 further comprising:a coupling housing on a lower end of the main tube of the tubular junction, the coupling housing having a bore therein; a guide located on a lower end of the pump, surrounding a lower end of the driven shaft and releasably received within the bore of the coupling housing, the guide having at least one elongated slot on its exterior; and a key stationarily mounted to the coupling housing that protrudes radially inward into the bore and engages the elongated slot on the guide to prevent rotation of the guide within the bore of the coupling housing.
  • 10. The well pump assembly according to claim 9 wherein the guide has a tapered nose to orient the slot with the key.
  • 11. The well pump assembly according to claim 1 further comprising:a coupling housing on a lower end of the main tube of the tubular junction, the coupling housing having a bore therein; a guide located on a lower end of the pump, surrounding a lower end of the driven shaft and releasably received within the bore of the coupling housing, the guide having at least one elongated slot on its exterior; a shaft coupling secured to a lower end of the driven shaft having a receptacle on a lower end for engaging an upper end of the drive shaft of the motor; and a key stationarily mounted to the coupling housing that protrudes radially inward into the bore and engages the elongated slot on the guide to prevent rotation of the guide within the bore of the coupling housing.
  • 12. The well pump assembly according to claim 11 wherein the guide has a tapered nose to orient the slot with the key.
  • 13. A well pump assembly, comprising in combination:a string of tubing adapted to extend into a well; a tubular junction connected to a lower end of the string of tubing, the tubular junction having a main tube that is coaxial with the string of tubing and a bypass tube that branches off of the main tube from the junction; the main tube having a coupling housing located below the junction of the main tube and the bypass tube; a motor mounted to the coupling housing, the motor having a drive shaft with an upper end that extends into the coupling housing; a pump having a housing and a driven shaft with a lower end that releasably stabs into engagement with the upper end of the drive shaft, the pump having a lesser outer diameter than an inner diameter of the string of tubing and being capable of being lowered into and retrieved through the string of tubing while the motor remains mounted to the coupling housing; an anti-rotation member in the main tube; and an anti-rotation member on the pump that engages the anti-rotation member in the main tube to prevent rotation of the housing of the pump; the tubular junction being perforated to admit well fluid to the pump; and wherein the upper end of the drive shaft of the motor is located below the junction of the main tube and the bypass tube to enable tools to be lowered from the surface through the string of tubing.
  • 14. The well pump assembly according to claim 13 wherein said tools are lowered from the surface through said bypass tube while the pump is removed from said string of tubing.
  • 15. The well pump assembly according to claim 13 wherein the pump extends above the junction of the main tube and the bypass tube when the driven shaft is in engagement with the drive shaft of the motor.
  • 16. The well pump assembly according to claim 13 wherein the pump is a centrifugal pump.
  • 17. The well pump assembly according to claim 13 wherein the pump is a progressive cavity pump.
  • 18. The well pump assembly according to claim 13 further comprising:a guide located on a lower end of the pump, surrounding a lower end of the driven shaft and releasably received within the coupling housing; wherein the anti-rotation member on the pump comprises at least one elongated slot on an exterior of the guide; and the anti-rotation member in the tubular junction comprises a key stationarily mounted to the coupling housing that protrudes radially inward into the coupling housing and engages the elongated slot on the guide to prevent rotation of the guide.
  • 19. The well pump assembly according to claim 18 wherein the guide has a tapered nose to orient the slot with the key.
  • 20. A method of installing and operating a submersible pump in a well and conducting an auxiliary operation in the well, comprising the steps of:(a) mounting a pump motor that has a drive shaft coaxial to a main tube of a tubular junction, the tubular junction having a bypass tube joining the main tube at a junction; (b) securing the tubular junction to a string of tubing with the main tube coaxial with the string of tubing, and lowering the string of tubing, tubular junction, and pump motor into the well; then (d) lowering a pump assembly through the string of tubing until a driven shaft of the pump assembly stabs into engagement with the drive shaft of the motor; then (e) providing power to the motor and rotating the pump assembly, thereby pumping well fluid through the string of tubing; then, to perform an auxiliary operation, (f) retrieving the pump through the string of tubing while leaving the motor mounted to the main tube; then (g) lowering a line through the string of tubing and through the bypass tube and performing the auxiliary operation with the line.
  • 21. The method according to claim 20, wherein the step (g) further comprises:placing a kickover tool at the junction of the main tube and the bypass tube; then directing the line into the bypass tube with the kickover tool.
  • 22. The method according to claim 20, further comprising:removing the line from the string of tubing; and lowering the pump assembly back through the string of tubing into operative engagement with the motor.
  • 23. The method according to claim 20, wherein step (a) comprises positioning an upper end of the drive shaft below the junction of the main tube with the bypass tube.
  • 24. The method according to claim 20, wherein step (d) further comprises preventing rotation of a housing of the pump assembly relative to the tubular junction.
  • 25. The method according to claim 20, wherein step (e) comprises drawing the well fluid through perforations provided in the tubular junction.
CROSS-REFERENCE

This application claims the benefit of provisional application Ser. No. 60/107,919 filed Nov. 10, 1998.

US Referenced Citations (11)
Number Name Date Kind
RE. 35454 Cobb Feb 1997
1896110 Simmons Feb 1933
4452305 Schwendemann Jun 1984
4898244 Schneider Feb 1990
5224545 George et al. Jul 1993
5284210 Helms et al. Feb 1994
5706896 Tubel et al. Jan 1998
5732773 Parks et al. Mar 1998
5746582 Patterson May 1998
5871051 Mann Feb 1999
5954483 Tetzlaff Sep 1999
Foreign Referenced Citations (1)
Number Date Country
2325483A Nov 1998 GB
Non-Patent Literature Citations (1)
Entry
Pump Bypass Tool; 1992; Centrilift; Baker Hughes Incorporated.
Provisional Applications (1)
Number Date Country
60/107919 Nov 1998 US