The present invention relates to ventilation of enclosures.
Membrane vents are used, for example, in the automotive and telecommunications industries to equalize pressure between the interior and exterior of otherwise sealed enclosures. In membrane vents, membranes generally comprise porous air-transmitting material that is preferably impermeable to liquids. Membrane vents are therefore able to equalize pressure, while minimizing contamination of enclosure interiors.
The effectiveness of a membrane vent at pressure equalization is dependant upon both the material composition of the membrane, and upon the membrane's surface area. In the prior art, a membrane is approximately flat and arranged perpendicular to a small bore in the enclosure wall so as to completely cover the bore. This provides for a membrane surface area equal to or only slightly larger than the cross section of the bore, limiting the rate of pressure equalization. During periods of moderate to high changes in interior or exterior pressure, such limited rates of pressure equalization proves detrimental.
A membrane vent is provided. The vent includes an air permeable tubular membrane, a tubular structural support adapted to be received by the tubular membrane, an air vent fitting attached to the tubular membrane at a first end and an end cap attached to the tubular membrane at a second end.
An air permeable sealed enclosure is provided. The enclosure includes a membrane vent adapted to mount through a wall of the enclosure, the membrane vent comprising a tubular membrane, a tubular structural support, wherein the tubular membrane is stretched over the tubular structural support, an air vent fitting attached to the tubular membrane at a first end and an end cap attached to the tubular membrane at a second end.
a depicts a perspective view of a tubular membrane vent prior to assembly in accordance with one embodiment of the present invention.
b illustrates a perspective view of the tubular membrane vent of
a shows a side view of a threaded air vent fitting of the tubular membrane vent in accordance with one embodiment of the present invention.
b shows a cross sectional side view of the threaded air vent fitting of
c illustrates a cut away of threaded air vent fitting of
d illustrates a cross sectional view of
a illustrates a perspective view of a plug air vent fitting in accordance with one embodiment of the present invention.
b illustrates a representation of a plug air vent fitting in accordance with one embodiment of the present invention.
c illustrates a side view representation of a plug air vent fitting in accordance with one embodiment of the present invention.
a illustrates a front view of plug air vent fitting of the tubular membrane vent in accordance with one embodiment of the present invention.
b illustrates a cross sectional side view of the plug air vent fitting of the tubular membrane vent in accordance with one embodiment of the present invention.
a illustrates a tubular membrane in accordance with one embodiment of the present invention.
b illustrates a tubular membrane in accordance with one embodiment of the present invention.
c illustrates a tubular membrane in accordance with one embodiment of the present invention.
d illustrates a tubular membrane in accordance with one embodiment of the present invention.
a illustrates a perspective view of a tubular membrane vent in accordance with one embodiment of the present invention.
b illustrates a side view representation of a tubular membrane vent in accordance with one embodiment of the present invention.
c illustrates a side view representation of a tubular membrane vent in accordance with one embodiment of the present invention.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
In the illustrated embodiment, the tubular membrane 121 comprises a cylinder having a diameter approximate to the diameter of the bore, and a length. In one embodiment, the tubular membrane 121 has a length of between 3 and 10 inches and a diameter between ⅛ and 1 inch. In alternative embodiments, the tubular membrane 121 comprises cylinders larger in diameter than the enclosure opening and diameters smaller than the enclosure opening. In still further embodiments, the tubular membrane 121 comprises alternative shapes, such as a tubular membrane 121 having a flared end or a bulbous tubular membrane 121.
In one embodiment, tubular membrane 121 comprises an air permeable hydrophobic material. In an alternative embodiment, tubular membrane 121 comprises air permeable material that is both hydrophobic and oleophobic. In certain embodiments, tubular membrane 121 comprises a polytetrafluoroethylene (PTFE) membrane. In one embodiment, tubular membrane 121 comprises TETRATEX Performance Fabrics by Donaldson Corporation.
In the illustrated embodiment of
A plurality of vents 230 are separated from the lower tip 125 by a radial flared region 232 and disposed perpendicular to the longitudinal axis. In certain embodiments, the radial flared region 232 promotes the ease of applying torque and protects the plurality of vents 230. In alternative embodiments the flared region 232 is absent. The threaded air vent fitting 117 has a hollow core 233 that extends from the upper tip 122 to the plurality of air vents 230. In alternative embodiments, the hollow core 233 extends slightly beyond the plurality of vents 230. In further embodiments, the hollow core 233 extends from the upper tip 122 to the lower tip 125.
A flange 235 is situated adjacent the plurality of vents 230 along the longitudinal axis. A circumferential groove 237 is located along the side of the flange 235 nearest the upper tip 122. Disposed within the circumferential groove 237 is a gasket (not shown). In one embodiment, the gasket is comprised of silicone, rubber, polyurethane, or the like. Adjacent the flange 235 along the longitudinal axis is disposed a threaded region 242. The threaded region 242 is designed to couple, for example, with a threaded bore of an electrical enclosure.
A connector member 245 extends along the longitudinal axis from the upper tip 122 towards the threaded region 242. In the illustrated embodiment, the connector member 245 comprises a first cylindrical section 248 approximately matching the diameter of the tubular membrane 121. A ring shaped projection 249 is formed along the circumferential face of the first cylindrical section 248. The ring shaped projection 249 has a first diameter 250 disposed near the upper tip 122 and a second diameter 252 disposed further from the upper tip 122, the first diameter 250 corresponding to the diameter of the cylindrical section 248, and the second diameter 252 being greater than the cylindrical section 248 in diameter. Between the first diameter 250 and second diameter 252 is formed a truncated cone 255, as illustrated in
When the connector member 245 is inserted into tubular membrane 121, the ring shaped projection 245 expands tubular membranes 121's diameter. In one embodiment, this expansion causes a tight seal due to the tubular membrane's 121 elasticity and resistance to expansion. Concurrently, the second cylindrical section 260 couples to tubular structural support 125, providing additional mechanical strength. In certain embodiments a clamping member (not shown) is implemented along the first cylindrical section 248 after insertion into tubular membrane 121 to apply additional securing force. In one embodiment, clamping member is comprised of heat shrink tubing, a wire tie, a cable tie, or the like.
In alternative embodiments, securing means other than a threaded fitting are used to attach tubular membrane vent 100 to an enclosure.
a and 4b illustrate a perspective view and a side view, respectively, of a vent cap 129, in accordance with one embodiment of the present invention. In one embodiment, vent cap 129 comprises substantially the same material or materials as air vent fitting 117. In the illustrated embodiment, vent cap 129 comprises a connector member 245 described with respect to
a illustrates a perspective view of a tubular membrane vent 100 coupled to an electrical enclosure 503, shown generally at 500, in accordance with one embodiment of the present invention.
Tubular membrane vent 100 enables enclosures to maintain weather tight status and protection from wind, rain, icing, dust and the intrusion of water when submersed.