The invention relates to a tubular reactor with a rotating reactor chamber for thermal treatment of biomass.
Reactors of this kind are also known as heated drum reactors. In addition to controlling and checking the process temperature in thermal treatment of biomass, e.g. torrefaction, it is also necessary to control the retention time in the tubular reactor in order to ensure uniform treatment. The retention time distribution should be as narrow as possible in order to obtain a product that is as uniform as possible. In the tubular reactors known, however, the spectrum of retention times, depending on length and speed, is very broad.
The aim of the invention is, therefore, to provide a drum or tubular reactor that delivers a product that is as uniform as possible.
According to the invention, this is achieved by the reactor chamber being subdivided into zones by means of ring-shaped plates. These zones cause the particles to be retained in a particular area and thoroughly mixed there, i.e. the particles being treated are homogenized. Material (particles) cannot pass into the next chamber or be discharged at the end of the reactor until their height reaches the inner circumference of the ring-shaped plate.
An advantageous further embodiment of the invention is characterized by a conveying tool being secured to at least one plate, where the conveying tool can be mechanically adjustable. As a result, the material is conveyed evenly into the next chamber according to the reactor speed, thus the distribution of retention times for all particles in the chamber becomes more homogenous.
If conveying tools for different directions of rotation are provided on at least one plate, these tools either convey material or convey no material, depending on the direction of rotation. In this way, the reactor can be emptied more quickly by changing the direction of rotation. This also prevents caking and/or overheating of the particles when the reactor is shut down.
A favourable further embodiment of the invention is characterized by a conveying spiral being provided on the shell of the reactor's inner drum. With a conveying spiral of this kind, preferably with a low height, it is possible to empty the reactor completely. If rotated in the opposite direction to the operating direction of rotation of the reactor, this spiral also contributes additional mixing within a zone.
A favourable embodiment of the invention is characterized by heating tubes being arranged in longitudinal (axial) direction in the reactor chamber, where the heating tubes can be arranged in several circular rows, preferably two circular rows, on the reactor's inner drum shell. A heating medium, e.g. flue gas, is fed through these tubes, ensuring on the one hand that the particles are heated evenly and, on the other hand, that they are also well homogenized.
If the rotating reactor chamber is enclosed in an outer reactor drum and an annular gap is provided between the rotating reactor chamber and the outer reactor drum, where the outer reactor drum can rotate together with the reactor chamber, the particles can be heated even better with a large transfer surface area.
In the following, the invention is exemplified on the basis of the drawings, where
The cooled heating medium—in this case flue gas—then leaves the drum reactor 1 through the connection 7 at an approximate temperature of 280-300° C. The gas generated by thermal treatment is discharged at the connecting piece 8. If the reactor is used for torrefaction, the torrefaction gas is discharged here.
The conveying tools 13 are specially shaped either to convey material or not convey material, depending on the direction of rotation. In addition, conveying tools 13′, preferably several, are provided, which only convey material when rotating in the opposite direction to the operating direction of rotation of the reactor. These can be used to accelerate emptying of the reactor by changing the direction of rotation, thus there can be no caking and also no overheating of the material. This also prevents any outbreak of fire.
In addition to the conveying tools 13, 13′, a conveying spiral 14 of low height is mounted, making it possible to empty the reactor completely when rotating in one direction. If it is rotated in the opposite direction, the spiral provides additional mixing within a zone. A certain filling level according to the conveying capacity of the conveying tools 13 is the result. The retention time of the material in the tubular reactor is approximately 20 to 40 minutes.
At the reactor outlet 15, there is a conical tube section 16 attached through which material is conveyed towards the cooling screw 17 independently of the speed.
In the cooling screw 17, very finely atomized water is sprayed onto the hot product through a nozzle system 18 comprising several nozzles. The water volume is controlled by switching single nozzles on and off. A temperature measurement at the screw shell is used as command variable. The water vapour forming is removed through the connection 8 together with the torrefaction gas or through an additional connection 19.
Number | Date | Country | Kind |
---|---|---|---|
A 1133/2011 | Aug 2011 | AT | national |
Number | Name | Date | Kind |
---|---|---|---|
2470315 | McGehee | May 1949 | A |
2504156 | Ronne | Apr 1950 | A |
2936220 | Schwarting et al. | May 1960 | A |
3493344 | St Clair | Feb 1970 | A |
3823487 | Cherry | Jul 1974 | A |
4393603 | Casperson | Jul 1983 | A |
4659356 | Lawhon | Apr 1987 | A |
4753019 | Holopainen | Jun 1988 | A |
5562053 | Lim | Oct 1996 | A |
5673748 | May et al. | Oct 1997 | A |
Number | Date | Country |
---|---|---|
792052 | Dec 1980 | SU |
Number | Date | Country | |
---|---|---|---|
20130078589 A1 | Mar 2013 | US |