The present invention is a tubular-shaped biomaterial, comprising a hyaluronic acid derivative, that is able, when used as a vascular graft, to induce guided vascular regeneration after being implanted in vivo, that leads to the de novo reconstitution of the vascular wall of small and medium-sized arteries.
Cardiovascular disorders with atherosclerotic complications (ASCVD, AtheroSclerotic CardioVascular Diseases) constitute the most common class of pathology worldwide. The most frequent are coronary disorders, infarct, ictus and arterial hypertension. Their incidence and prevalence in the population are constantly on the increase, as a result of both unhealthy lifestyle and the lengthening of the average lifespan. The prevention, cure and management of these pathologies is extremely costly; the calculated direct and in direct costs for 2004 in the United States amount to 370 million dollars (Heart Disease and Stroke Statistics 2004 Update, American Heart Association, Dallas, Tex.). Treatment of these diseases is, however, a priority of public health spending. Despite the constant progress being made in endovascular surgery, the favoured approach to therapy for coronary and/or peripheral occlusions remains the surgical implantation of prostheses to create a circulatory by-pass. This procedure can be applied to lesions in a wide variety of anatomical sites and ensures a good degree of patency to the vessel in the long term. In the case of larger vessels (diameter>6 mm) synthetic prostheses made of materials such as Dacron®, Polytetrafluoroethylene or Polyurethane are used successfully. Although they have brought about a reduction in the need for repeat surgery, these materials do tend to cause infection around the suture, to give rise to occlusions and to become dilated (Conte, Faseb J; 1998; 12:43-45), so there is a considerable risk of side effects when they are used.
The abovesaid materials are not indicated for use in small vessels (diameter 3-5 mm) such as the coronary and carotid arteries, because they are not sufficiently elastic to withstand the low blood flow rate. In this type of surgery, therefore, grafts of autologous vessels are usually used (such as a saphenous vein, internal mammary artery or radial artery).
The results obtained are good both in terms of patency of the vessel and elasticity of the graft, but they tend to be short-lived, probably because as the grafted vessel adapts to the new blood flow, it undergoes hyperplasia of the intima, not only at the point where it is stitched but also along its length. This determines stenosis that drastically reduces the blood flow, leading to failure of the graft itself (ibidem). Moreover, the availability of these materials may prove insufficient in patients requiring multiple grafts because of diffuse vascular disorders.
These factors together have led researchers to find investigate tissue engineering techniques by which it is possible, using a multidisciplinary approach, to create graft structures (such as cardiac valves and blood vessels) that are viable and completely autologous. Since they are viable, the bioengineered blood vessels are sensitive to stimuli and are self-renewable, with an intrinsic capacity for healing and remodelling according to the requirements of the specific environment in which they are implanted. Generally speaking, tissue engineering of the blood vessels starts with a supporting structure or scaffold constituted by a natural or synthetic bioresorbable material. The scaffolds provide a temporary biomechanical support until the endothelial cells of the original vessel have themselves produced extracellular matrix. Various kinds of scaffold have been used to date, such as:
Each of these materials has a different performance profile according to its individual characteristics, but, to date, the most serious limitations to their use in vivo concern:
One natural polymer presents a particularly interesting profile, however: hyaluronic acid (HA), chemically modified so as to obtain three-dimensional matrices to be used as biomaterials for the preparation of new engineered tissues. HA is a hetero-polysaccharide composed of alternating residues of D-glucuronic acid and N-acetyl-D-glucosamine; it is a straight-chain polymer with a molecular weight varying between 50,000 and 13×106 Da, according to the source it was obtained from and the methods used to prepare it. It is present in nature in the pericellular gels, in the fundamental substance of the connective tissue of vertebrates, in the synovial fluid of joints, in the vitreous humor and in the umbilical cord. Since it is practically ubiquitous, HA plays an important biological role in the organism, especially as a mechanical support for the cells of many different tissues (skin, tendons, cartilage, muscles); it is also well known that, through its CD44 membrane receptor, HA modulates numerous different processes relating to cell physiology and biology, such as cell migration and differentiation and angiogenesis, and is responsible for tissue hydration and joint lubrication.
The chemical modifications performed on the HA molecule, known to the state of the art to be the most interesting for the obtainment of biomaterials are:
Of the numerous derivatives listed above, those particularly suitable for the formation of new engineered tissues have proved to be the HA esters, and especially so the benzyl ester (HYAFF®11), as demonstrated for example by Campoccia et al. (Biomaterials, 1998,19:2101-2127).
Moreover, experiments known to the state of the art (Turner N J, et al., Biomaterials, 2004, 25: 5955-5964) reveal that endothelial cells taken from human saphenous veins are able to proliferate perfectly on scaffolds constituted by HYAFF®11 fibres worked into a non-woven mesh (EP 618817 B1), once seeded thereon in suitable conditions which an expert in the field would be well acquainted with. The cells first adhere to the fibres of HYAFF®11 and then proliferate inside the fibrous mesh, spreading through the interstices until, within an interval of about 20 days, they form a compact monolayer over the surface of the scaffold that is characterised by a well-organised subendothelial matrix. A first attempt to create small blood vessels was made by Remuzzi A. et al. (Tissue Eng, 2004, 10: 699-710) who first grew smooth-muscle, vascular cells obtained from porcine thoracic aorta on a non-woven, totally esterified HYAFF®11 mesh (HYAFF®-11 p100) and then wrapped the mesh round cylindrical silicone supports, stitched it in place and left the cells to grow for another 14 days. At the end of this process, the silicone support is pulled out, leaving cylinders with an outer diameter of about 6 mm and an inner diameter of about 4 mm, the outer surface of which presents a fair extracellular matrix, while the muscle cells are to be found inside the HYAFF®11 scaffold. Although its consistency is right and it is completely biocompatible, this type of structure is not suitable for the purposes of the present invention because it is not able to bear the pressure of the blood flow. Indeed, mechanical resistance tests have shown that they are decidedly less resistant than the starting porcine coronary vessels, probably because the various layers of rolled HYAFF®11 do not completely adhere to each other, so that the tube is of uneven thickness; moreover, inside the cylinder the layer of endothelial cells is insufficient and the layer of smooth muscle cells is not continuous. A combination of these elements is vital to the mechanical stability and functional efficiency of a vascular graft. Inventions that are already known to the state of the art describe tubular structures of HYAFF®11, in which the HYAFF®11 cylinder is enriched with a single thread wound round it in the form of a helix (EP 571415 B1), or with several threads made of the same material knitted together (EP 652778 B1) and inserted inside the tube to add to its compactness. These scaffolds have been used successfully in the regeneration of nerve fibres. Other tubular HYAFF®11 structures have been used for the regeneration of the urethra (Italiano G. et al., Urol Res, 1997, 26:281-284): in this case the tubes were formed by a mesh of HYAFF®11 fibres.
The present invention goes way beyond the limits of the current know-how of an expert in the field. It relates to a new tubular structure, whose wall has an unbroken surface, consisting essentially of at least one HA derivative and optionally a further polymer of natural, synthetic or semisynthetic origin.
These tubular structures enable the complete reconstruction of the vessel wall when grafted directly in vivo. Moreover, they are biocompatible, biodegradable and adapt perfectly to the physiology and blood dynamics of the district wherein they are implanted, constituting an excellent tubular join. Their characteristics enable them to enhance the regeneration of the walls that constitute the urethra and their use is therefore justified in uro-genital surgery.
Therefore the present invention further relates to:
Finally the present invention further relates to a process for preparing said tubular structure comprising the following steps:
(b): the same specimen magnified 20×: the aorta comes into contact with the guide channel at the point of anastomosis.
For the purpose of the present invention the definition that the tubular structure “consists essentially of at least one HA derivative and optionally a further polymer” means that the at least one HA derivative optionally associated to a second polymer is present in said tubular structure in total amounts=95%, by weight based on the total weight of the tubular structure.
In the present invention the HA derivatives preferably used for preparing the tubular structure according to the present invention are selected from HA esters with alcohols of the aliphatic, araliphatic, cycloaliphatic, aromatic, cyclic and heterocyclic series (HYAFF®), amides of HA with amine of the aliphatic, araliphatic, cycloaliphatic, aromatic, cyclic and heterocyclic series (HYADD™), deacetylated, O-sulphatated and percarboxylated HA derivatives, and mixtures thereof.
More preferably the hyaluronic acid derivatives are hyaluronic acid esters. Even more preferably the hyaluronic acid ester are selected from those whose carboxy functions have been esterified with benzyl alcohol (HYAFF®11) with between 50 and 100% esterification degree.
According to particularly preferred embodiments of the present invention the hyaluronic acid benzyl esters used for the purpose of the present invention have an esterification degree of from 75 to 100%.
The tubular structures according to the present invention can be used above all as temporary ducts in vascular surgery to the small and medium sized arteries. By the examples and experiments described in detail hereafter the Applicant has demonstrated that the structures described herein have all the mechanical and functional characteristics necessary for the set purpose, because they:
The prosthesis obtained with the tubular structure according to the present invention, thanks to the intrinsic properties of the material used (preferably HYAFF®11), provides a solution to all the limitations encountered to date, and represents a breakthrough in the field of uro-genital and vascular surgery, especially for vessels measuring between about 2 and 5 mm (coronary, internal carotid, brachial, posterior tibial arteries), between 7 and 10 mm circa (common carotid artery, popletial artery, common iliac and common femoral arteries). It can also be applied to larger vessels, (such as the abdominal and thoracic aortas). Materials suitable for the purposes of the present invention can also be obtained from an HA derivative associated with an other type of HA derivative and/or other natural, semisynthetic or synthetic polymers. Preferably natural polymers include: collagen, elastin, coprecipitates of collagen and glycosaminoglycans, cellulose, polysaccharides in the form of a gel, such as chitin, chitosan, pectin or pectic acid, agar, agarose, xanthane gum, gellan, alginic acid or alginates, polymannan or polyglycans, polyamides, natural gums.
Preferably semisynthetic polymers include:
Lastly, preferred synthetic polymers include polylactic and polyglycolic acids, or copolymers or derivatives or derivatives thereof, polydioxane, polyphosphazene, resins.
More preferably the tubular structure according to the present invention, in case they contain a second polymer of semisynthetic origin, this is selected from an ester of carboxy-methylcellulose more preferably the benzyl ester, or an ester of alginic acid, more preferably the benzylester.
The weight ratio of hyaluronic acid derivative/other polymer, in case the latter present, is preferably comprised between: 95:10 and 60:40.
More preferably the weight ratio hyaluronic acid derivative/other polymer is comprised between 80/20 and 70/30
According to a particularly preferred embodiment the tubular structure in case it contains an other polymer is formed by hyaluronic acid benzyl ester 100% (HYAFF®11p100) and benzyl ester of carboxymethylcellulose in weight ratio 80/20.
According to an other particularly preferred embodiment the tubular structure according to the present invention, in case it contains an other polymer, it consists of (HYAFF®11p100) and benzyl ester of alginic acid in weigh ratio of 70/30.
It is also possible to prepare said tubular structures associating the HA derivatives with one or more pharmacologically and/or biologically active substances. In the process according to the present invention in step (I) the concentration in DMSO of hyaluronic acid and the optional second polymer is preferably comprised between 70 and 160 mg/ml, more preferably between 80 and 150 mg/ml.
Preclinical Research
For purely descriptive purposes and without being limited to the same, we report hereafter some examples of the preparation of grafts that are the subject of the present invention, and the results obtained from in vivo experiments which demonstrated the absolute efficacy and safety of the materials claimed in the present invention.
Preparation of Tubular Prostheses Made with the Total Benzyl Ester of HA
The total benzyl ester of HA (HYAFF®-11 p100) was dissolved in dimethylsulphoxide (DMSO, 80-150 mg/ml) and the solution of HYAFF/DMSO was used to coat a rotating cylindrical steel bar with a diameter varying between 1 and 10 or more mm, according to the type of duct to be regenerated. The solution of HYAFF/DMSO coated on the cylinder was then coagulated in an ethanol bath. The tube thus formed was gently removed from around the cylinder, cut into suitable portions, washed in ethanol and air-blown dry. The prostheses obtained by this procedure were packed in double packs and sterilised with ? rays.
Preparation of Tubular Prostheses with the Benzyl Ester of HA and the Benzyl Ester of Carboxymethylcellulose
A mixture of powders composed of the total benzyl ester of HA (HYAFF®-11 p100) and a benzyl ester of carboxymethylcellulose in a ratio of 80/20 is dissolved in DMSO at a concentration of 100 mg/ml. Once solubilisation is complete, the mixture is treated as described in Example 1.1.
Preparation of Tubular Prostheses with the Benzyl Ester of HA and the Benzyl Ester of Alginic Acid
A mixture of powders composed of the total benzyl ester of HA (HYAFF®-11 p100) and a benzyl ester of alginic acid in a ratio of 70/30 is dissolved in DMSO at a concentration of 120 mg/ml. Once solubilisation is complete, the mixture is treated as described in Example 1.1.
1.4 Implantation of the Prostheses
For the experiments described hereafter, 30 male, Wistar rats weighing 250-350 g were anaesthetised by the intraperitoneal route with a cocktail of ketamine hydrochloride 40 μg e xylazine 20 μg/100 mg in weight. The abdominal area was shaved and rendered aseptic with Betadine and 70% alcohol. The abdominal muscles were exposed through an incision of about 3 cm; the part of the aorta between the renal arteries and the aortic trifurcation was then exposed. Once the vessel had been clamped, a segment of aorta of 1 cm was incised and a tube of HYAFF®-11 p100 (diameter 2 mm, length 1 cm, prepared as per Example 1.1) was inserted by anastomosis, first proximally and then distally, and then stitched with continuous suture using nylon 10.0 thread (
1.5 Collection of the Prostheses
At each time point (5, 15, 30, 60 and 120 days) 5 animals were sacrificed. The graft area was carefully exposed through the earlier access incisions. After clamping, the aorta was incised transversally starting from the distal end, to 3 mm from the site of anastomosis, and the segments thus obtained were thoroughly rinsed in heparin saline solution (NaCl 0.9%) (
1.6 Histological Analysis
The samples fixed in formaldehyde were gradually dehydrated in ethyl alcohol, embedded in paraffin and then cut along the longitudinal axis of the sample into sections 7 μm thick, which were then stained with haemotoxylin eosin (HE) and Azan-Mallory stain for histological tests, while Weighert's stain revealed the presence of elastin fibres.
1.7 Immunofluorescence Analysis
The endothelial cells were characterised by assessing the intracellular expression of the von Willebrand factor (Factor VIII): the samples previously placed in OCT were frozen in liquid nitrogen and then cut with a cryostat into 5 μm-thick sections. The immunofluorescence studies were conducted using polyclonal antibodies (produced in rabbit) human von Willebrand anti-factor, diluted 1:300 (DAKO); after 1 hour of incubation, the samples were rinsed with saline and treated with anti-polyclonal secondary antibody bound to a fluorescent pigment (TRICT).
The smooth muscle cells were identified and characterised, measuring the expression of Myosin Light Chain Kinase (MLCK), according to the method described by Vescovo et al. (BAM; 1996; 6:183-187).
2. Preclinical Data
2.1 Macroscopic Observations on Implantation and Collection
From a surgical point of view, the tubes of HYAFF®-11 p100 appeared soft and elastic, easy to cut and stitch and with ideal characteristics for suture of the anastomosis with 10.0 nylon thread. It took about 50 minutes to complete the two anastomoses, as reported in the literature (Zhang et al., Biomaterials; 2004; 25: 177-187). Once the blood flow had been restored through the prosthesis, dilation of the pulse was visible to the naked eye and the slight bleeding from the tube was easily stemmed with a gauze pad (
2.2 Group 1 (5 Days)
The data relative to the observations made on the 5th day are shown in
2.3 Group 2 (15 Days)
On the 15th day, the arterial tract is completely regenerated and all the vascular structures are well represented and organised, as shown in
2.4 Group 3 (30 Days)
On the 30th day, the HYAFF®-11 p100 tube is still present and the newly-formed artery runs inside it. Histological analysis of the samples (
2.5 Group 4 (60 Days)
On the 60th day the prosthesis is still present and the regenerative process proceeds normally. Endothelial and smooth muscle cells are clearly visible (
2.6 Group 6 (120 Days)
The most important finding at this point of the study is the absence of the biomaterial revealed by histological tests (
From the above account, it can therefore be deduced that the new tubular structures that are the subject of the present invention, constituted preferably by hyaluronic acid esterified with benzyl alcohol (HYAFF®11) with 100% esterification, have all the fundamental requisites to be considered, to all effects, systems for assisted vascular and/or urethral regeneration, to be used directly in vivo. Indeed, because of the peculiar character of the biomaterial used, the tubes claimed herein are biocompatible, biodegradable and therefore temporary, capable of allowing the fast and normal growth of vascular and/or urethral tissues and of becoming perfectly integrated with the environment wherein they are implanted, both from a functional and mechanical point of view, until the damaged structure has been completely regenerated. The tool claimed herein is therefore new, safe, easy to make and handle, able to solve any problem linked with the implantation of vascular and/or urethral replacements used to date in clinical practice. The invention therefore constitutes an enormous step forward in the surgical treatment of cardiovascular diseases with atherosclerotic complications. The invention being thus described, it is clear that the examples for the preparation of the biomaterial in question can be modified in various ways. Such modifications are not to be considered as divergences from the spirit and purpose of the invention, and any modification that would appear evident to an expert in the field comes within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
PD2004A000265 | Oct 2004 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/55610 | 10/27/2005 | WO | 4/23/2007 |