Tubular valving system and method

Information

  • Patent Grant
  • 8291980
  • Patent Number
    8,291,980
  • Date Filed
    Thursday, August 13, 2009
    15 years ago
  • Date Issued
    Tuesday, October 23, 2012
    12 years ago
Abstract
A tubular valving system includes a tubular having a plurality of ports. A plurality of sleeves are disposed at the tubular covering the plurality of ports, and a plug runnable within the tubular is seatingly engagable with the plurality of sleeves such that attainment of a first pressure applied against the plug and one of the plurality of sleeves causes movement of the one of the plurality of sleeves to thereby uncover at least one of the plurality of ports covered by the one of the plurality of sleeves. At least one of the plurality of sleeves is yieldable to allow passage of the plug upon attainment of a second pressure applied thereagainst, and a plurality of occlusive members occlude the plurality of uncovered ports until a later time.
Description
BACKGROUND

Tubular valves that control occlusion of ports that fluidically connect an inner bore of a tubular with an outside of the tubular are commonly used in several industries including the downhole completion industry. Such valves are deployed in boreholes to control fluid flow in both directions, inside to outside of the tubular as well as outside to inside of the tubular, through ports. New systems and methods that improve control over the opening of such ports along a tubular are always of interest to operators of such systems.


BRIEF DESCRIPTION

A tubular valving system comprising a tubular having a plurality of ports; a plurality of sleeves disposed at the tubular covering the plurality of ports; a plug runnable within the tubular and seatingly engagable with the plurality of sleeves such that attainment of a first pressure applied against the plug and one of the plurality of sleeves causes movement of the one of the plurality of sleeves to thereby uncover at least one of the plurality of ports covered by the one of the plurality of sleeves; at least one of the plurality of sleeves being yieldable to allow passage of the plug upon attainment of a second pressure applied thereagainst; and a plurality of occlusive members occluding the plurality of uncovered ports until a later time.


A method of valving a plurality of ports in a tubular comprising running a plug within the tubular; sequentially seatingly engaging the plug with a plurality of sleeves covering a plurality of ports in the tubular; pressuring up against the plug to a first pressure; moving the plurality of sleeves; uncovering the plurality of ports; pressuring up against the plug to a second pressure; yieldably defeating at least one of a plurality of seats disposed at the plurality of sleeves; and removing a plurality of occlusive members from the plurality of ports that are uncovered.





BRIEF DESCRIPTION OF THE DRAWINGS

The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:



FIG. 1 depicts a schematical sectional view of a tubular valving system disclosed herein;



FIG. 2 depicts a schematical sectional view of the tubular valving system of FIG. 1, shown in an alternate position; and



FIG. 3 depicts a schematical sectional view of an alternate embodiment of a tubular valving system disclosed herein.





DETAILED DESCRIPTION

A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.


Referring to FIGS. 1 and 2, an embodiment of a tubular valving system is illustrated generally at 10. The valving system 10 includes, a tubular 14 having a plurality of ports 18, a plug 22, disclosed herein as a ball, runnable within the tubular 14, and a plurality of sleeves 26 seatingly receptive to the plug 22. Each of the sleeves 26 is slidably sealingly engaged with the tubular 14 such that the sleeves 26 cover one or more of the ports 18A when in a first position as illustrated by the sleeve 26A while the sleeves 26 uncover the ports 18B when in a second position as illustrated by the sleeve 26B by longitudinal alignment of openings 28 in the sleeve 26B with the ports 18B. The sleeves 26 have a yieldable seat 30, illustrated herein as a ball seat that is sealingly engagable with one of the plugs 22 run thereagainst. At selected pressures applied across the seated plug 22 the sleeve 26 is urged to move relative to the tubular 14. As such, the sleeve 26 is movable from the first position to the second position, for example, to uncover the ports 18 covered thereby. When pressure is increased beyond a selected threshold pressure the yieldable seat 30 yields permitting the plug 22 to pass thereby and travel to another of the sleeves 26. By setting the pressure needed to yield the yieldable seat 30 to a greater value than the pressure needed to move the sleeve 26, the sleeve 26 is sure to move prior to yielding of the yieldable seat 30. Occlusive members 34 occlude the ports 18 until sometime after the sleeves 26 have become uncovered as will be discussed below.


The occlusive members 34 disclosed in this embodiment include collars 36 that are slidably sealingly engaged with the tubular 14 such that the ports 18 are occluded when the collars 36 are in a first position as illustrated by the collars 36 in FIG. 1 and the ports 18 are not occluded, or removed, when the collars 36 are in a second position as illustrated in FIG. 2, wherein openings 38 in the collars 36 are aligned with the ports 18.


The collars 36 of the occlusive members 34 in this embodiment are moved from the first position to the second position in response to a drop in pressure within the tubular 14 that allows biasing members 42, illustrated herein as compression springs, to move the collars 36 to the second position. Release members 46, shown in this embodiment as shear screws that longitudinally fix the collars 36 to the tubular 14 until after the release members 46 have been released, prevent movement of the collars 36 to the second position. Release of the release members 46 is accomplished by increasing pressure within the tubular 14 that acts on differential areas on the collars 36 to urge the collars 36 in a longitudinal direction opposite to the direction that aligns the openings 38 with the ports 18. By setting this releasing pressure of the release members 46 to a greater value than the pressure needed to yield the yieldable seats 30, the yieldable seats 30 are sure to yield prior to release of the release members 46. Once the release members 46 have been released the biasing members 42 are configured to move the collars 36 from the first position to the second position upon a drop in pressure below a selected threshold pressure. The collars 36 disclosed herein are similar to a device disclosed in U.S. Pat. No. 7,503,390 to Gomez, which is incorporated herein in its entirety by reference.


Increasing pressure within the tubular 14 to a pressure able to cause release of the release members 46 may be achieved against the plug 22 seated on a non-yieldable seat 50 that may be located on a slidable sleeve 54, as illustrated, or on a seat (not shown) longitudinally fixed to the tubular 14 depending upon the needs of each specific application.


Referring to FIG. 3, an alternate embodiment of a tubular valving system is illustrated generally at 110. The system 110 includes several of the same elements of the system 10 and as such like elements are numbered alike and in the interest of brevity are not described again in detail hereunder. A primary difference between the system 110 and the system 10 is that occlusive members 134 in the system 110 replace the occlusive members 34 in the system 10. The occlusive members 134 include dissolvable material 138 that occludes the ports 18, yet removes the occlusion once dissolved. Optional collars 142 that are sealedly attached to the tubular 14 can structurally support the dissolvable material 138. The dissolvable material 138 is substantially isolated from conditions within the tubular 14 that can promote dissolving of the dissolvable material 138, such as chemicals, fluids and pressure, for example, by the sleeves 26 when the sleeves 26 are in the first position. Such conditions can be conditions anticipated to be encountered downhole in a wellbore. Movement of the sleeves 26 to the second position exposes the dissolvable material 138 to conditions within the tubular 14 thereby initiating dissolving of the dissolvable material 138.


Since increases in pressure are used to move the sleeves 26, it may be desirable to limit any leak paths from the tubular 14 until all of the sleeves 26 have been moved. Delays in dissolving the dissolvable materials 138, and subsequent removal of occlusion of the ports 18 thereby may be desirable. Such delays could be controlled by a rate of dissolving as estimated by selected physical and chemical properties of the dissolvable material 138 once exposed to the conditions within the tubular 14. Alternately, the conditions within the tubular 14 may be controlled by an operator such that dissolving of the dissolvable material 138 is not initiated until an operator alters the conditions within the tubular 14 thereby exposing the dissolvable material 138 thereto such as by pumping specific chemicals within the tubular 14.


Alternate embodiments can have a plurality of the tubular valving systems 10, 110 distributed along the tubular with the systems 10, 110 located further from surface having seats 30 receptive to larger plugs 22 than systems 10 nearer to the surface. In such embodiments the occlusive members 34, 134 are isolated from the conditions within the tubular 14 that results in removal of the occlusion of the ports 18 until after the sleeves 26 that cover the ports 18 have been moved to the second position.


While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims
  • 1. A tubular valving system, comprising: a tubular having a plurality of ports;a plurality of sleeves disposed at the tubular covering the plurality of ports;a plug runnable within the tubular being seatingly engagable with each of the plurality of sleeves such that attainment of a first pressure applied against the plug and a first of the plurality of sleeves causes movement of the first of the plurality of sleeves to thereby uncover at least one of the plurality of ports covered by the first of the plurality of sleeves, the first of the plurality of sleeves being yieldable to allow passage of the plug upon attainment of a second pressure applied thereagainst to allow the plug to move to be seatingly engagable with a second of the plurality of sleeves such that the second of the plurality of sleeves is movable in response to a third pressure being applied against the plug to uncover at least an additional one of the plurality of ports, the second of the plurality of sleeves being yieldable to allow passage of the plug upon attainment of a fourth pressure while seated thereagainst, the foregoing sequence being repeatable against a selected number of the plurality of sleeves; andocclusive members positioned and configured to occlude the plurality of ports while the plurality of ports are uncovered by the plurality of sleeves until a later time.
  • 2. The tubular valving system of claim 1, wherein the occlusive members allow subsequent pressure build-up cycles to occur to move some of the plurality of sleeves and to yieldably pass the plug past some of the plurality of sleeves and prevent fluid from escaping through any of the plurality of the ports that have been uncovered until the later time when the occlusive members uncover the plurality of ports they are occluding.
  • 3. The tubular valving system of claim 1, wherein the plurality of occlusive members are dissolvable.
  • 4. The tubular valving system of claim 3, wherein the plurality of occlusive members dissolve after a selectable amount of time after exposure to specific conditions.
  • 5. The tubular valving system of claim 4, wherein the specific conditions are anticipated to be encountered downhole.
  • 6. The tubular valving system of claim 4, wherein the specific conditions include a chemical that is pumpable within the tubular.
  • 7. The tubular valving system of claim 1, wherein at least one of the first pressure is equal to the third pressure and the second pressure is equal to the fourth pressure.
  • 8. A method of valving a plurality of ports in a tubular, comprising: running a plug within the tubular;seatingly engaging the plug with a first of a plurality of sleeves covering a plurality of ports in the tubular;pressuring up against the plug while the plug is seated with the first of the plurality of sleeves to a first pressure;moving the first of the plurality of sleeves;uncovering at least one of the plurality of ports with the moving of the first of the plurality of sleeves;pressuring up against the plug while seated at the first of the plurality of sleeves to a second pressure;yieldably defeating seat disposed at the first of the plurality of sleeves;seatingly engaging the plug with a second of the plurality of sleeves covering the plurality of ports in the tubular;pressuring up against the plug while the plug is seated with the second of the plurality of sleeves to a third pressure;moving the second of the plurality of sleeves;uncovering at least one of the plurality of ports with the moving of the second of the plurality of sleeves;pressuring up against the plug while seated at the second of the plurality of sleeves to a fourth pressure;yieldably defeating a seat disposed at the second of the plurality of sleeves; andremoving an occlusive member from occluding the plurality of ports subsequent being uncovered at a later time.
  • 9. The method of valving a plurality of ports in a tubular of claim 8, further comprising dissolving the occlusive member.
  • 10. The method of valving a plurality of ports in a tubular of claim 8, further comprising exposing the plurality of occlusive members to conditions dissolvable thereof
  • 11. The method of valving a plurality of ports in a tubular of claim 8, wherein the removing the plurality of occlusive members includes moving the plurality of occlusive members relative to the tubular.
  • 12. The method of valving a plurality of ports in a tubular of claim 11, wherein the moving is in response to a drop in pressure.
  • 13. The method of valving a plurality of ports in a tubular of claim 8, further comprising releasing a plurality of release members engaged between the tubular and the plurality of occlusive members.
  • 14. The method of valving a plurality of ports in a tubular of claim 13, wherein the releasing the plurality of release members includes building pressure to a third pressure.
  • 15. The method of valving a plurality of ports in a tubular of claim 14, wherein the third pressure is greater than the second pressure.
US Referenced Citations (137)
Number Name Date Kind
1883071 Stone Dec 1928 A
2769454 Bletcher et al. Nov 1956 A
2812717 Brown Nov 1957 A
2822757 Colberly Feb 1958 A
2973006 Nelson Feb 1961 A
3007527 Nelson Nov 1961 A
3013612 Angel Dec 1961 A
3148731 Holden Sep 1964 A
3211232 Grimmer Oct 1965 A
3263752 Conrad Aug 1966 A
3358771 Berryman Dec 1967 A
3510103 Carsello May 1970 A
3566964 Livingston Mar 1971 A
3667505 Radig Jun 1972 A
3703104 Tamplen Nov 1972 A
3727635 Todd Apr 1973 A
3797255 Kammerer, Jr. et al. Mar 1974 A
3901315 Parker et al. Aug 1975 A
3954138 Miffre May 1976 A
3997003 Adkins Dec 1976 A
4067358 Streich Jan 1978 A
4160478 Calhoun et al. Jul 1979 A
4176717 Hix Dec 1979 A
4190239 Schwankhart Feb 1980 A
4246968 Jessup et al. Jan 1981 A
4260017 Nelson et al. Apr 1981 A
4291722 Churchman Sep 1981 A
4292988 Montgomery Oct 1981 A
4355685 Beck Oct 1982 A
4390065 Richardson Jun 1983 A
4448216 Speegle et al. May 1984 A
4478279 Puntar et al. Oct 1984 A
4537383 Fredd Aug 1985 A
4554981 Davies Nov 1985 A
4566541 Moussy et al. Jan 1986 A
4576234 Upchurch Mar 1986 A
4583593 Zunkel et al. Apr 1986 A
4669538 Szarka Jun 1987 A
4711326 Baugh et al. Dec 1987 A
4714116 Brunner Dec 1987 A
4729432 Helms Mar 1988 A
4823882 Stokley et al. Apr 1989 A
4826135 Mielke May 1989 A
1856591 Donovan et al. Aug 1989 A
4856591 Donovan et al. Aug 1989 A
4893678 Stokley et al. Jan 1990 A
4944379 Haaser Jul 1990 A
4979561 Szarka Dec 1990 A
5029643 Winslow et al. Jul 1991 A
5056599 Comeaux et al. Oct 1991 A
5230390 Zastresek et al. Jul 1993 A
5244044 Henderson Sep 1993 A
5297580 Thurman Mar 1994 A
5305837 Johns et al. Apr 1994 A
5335727 Cornette et al. Aug 1994 A
5343946 Morrill Sep 1994 A
5425424 Reinhardt et al. Jun 1995 A
5529126 Edwards Jun 1996 A
5609178 Hennig et al. Mar 1997 A
5704393 Connell et al. Jan 1998 A
5762142 Connell et al. Jun 1998 A
5775421 Duhon et al. Jul 1998 A
5775428 Davis et al. Jul 1998 A
5813483 Latham et al. Sep 1998 A
5960881 Allamon et al. Oct 1999 A
6050340 Scott Apr 2000 A
6053250 Echols Apr 2000 A
6079496 Hirth Jun 2000 A
6102060 Howlett et al. Aug 2000 A
6155350 Melenyzer Dec 2000 A
6173795 McGarian et al. Jan 2001 B1
6220350 Brothers et al. Apr 2001 B1
6227298 Patel May 2001 B1
6253861 Carmichael et al. Jul 2001 B1
6293517 Cunningham Sep 2001 B1
6378609 Oneal et al. Apr 2002 B1
6474412 Hamilton et al. Nov 2002 B2
6530574 Bailey et al. Mar 2003 B1
6547007 Szarka et al. Apr 2003 B2
6634428 Krauss et al. Oct 2003 B2
6644412 Bode et al. Nov 2003 B2
6666273 Laurel Dec 2003 B2
6668933 Kent Dec 2003 B2
6681860 Yokley et al. Jan 2004 B1
6712145 Allamon Mar 2004 B2
6712415 Darbishire et al. Mar 2004 B1
6834726 Giroux et al. Dec 2004 B2
6866100 Gudmestad et al. Mar 2005 B2
6896049 Moyes May 2005 B2
6948561 Myron et al. Sep 2005 B2
6983795 Zuklic et al. Jan 2006 B2
7150326 Bishop et al. Dec 2006 B2
7322408 Howlett Jan 2008 B2
7325617 Murray Feb 2008 B2
7337847 McGarian et al. Mar 2008 B2
7350578 Szarka et al. Apr 2008 B2
7377321 Rytlewski May 2008 B2
7387165 Lopez de Cardenas et al. Jun 2008 B2
7416029 Telfer et al. Aug 2008 B2
7467664 Cochran et al. Dec 2008 B2
7503390 Gomez Mar 2009 B2
7503392 King et al. Mar 2009 B2
7520336 Mondelli et al. Apr 2009 B2
7730953 Casciaro Jun 2010 B2
7832472 Themig Nov 2010 B2
20010007284 French et al. Jul 2001 A1
20040007365 Hill et al. Jan 2004 A1
20050061372 McGrath et al. Mar 2005 A1
20050072572 Churchill Apr 2005 A1
20050126638 Gilbert Jun 2005 A1
20050205264 Starr et al. Sep 2005 A1
20060124310 Lopez De Cardenas et al. Jun 2006 A1
20060169463 Howlett Aug 2006 A1
20060175092 Mashburn Aug 2006 A1
20060213670 Bishop et al. Sep 2006 A1
20060243455 Telfer et al. Nov 2006 A1
20070007007 Themig et al. Jan 2007 A1
20070012438 Hassel-Sorensen Jan 2007 A1
20070023087 Krebs et al. Feb 2007 A1
20070095538 Szarka et al. May 2007 A1
20070272413 Rytlewski et al. Nov 2007 A1
20080066924 Xu Mar 2008 A1
20080093080 Palmer et al. Apr 2008 A1
20080190620 Posevina et al. Aug 2008 A1
20080217025 Ruddock et al. Sep 2008 A1
20080308282 Standridge et al. Dec 2008 A1
20090032255 Surjaatmadja et al. Feb 2009 A1
20090044946 Schasteen et al. Feb 2009 A1
20090044955 King et al. Feb 2009 A1
20090056934 Xu Mar 2009 A1
20090056952 Churchill Mar 2009 A1
20090107680 Surjaatmadja Apr 2009 A1
20090159289 Avant et al. Jun 2009 A1
20090308588 Howell et al. Dec 2009 A1
20100294514 Crow et al. Nov 2010 A1
20110108284 Flores et al. May 2011 A1
20110180274 Wang et al. Jul 2011 A1
Foreign Referenced Citations (3)
Number Date Country
0427422 May 1991 EP
2281924 Mar 1995 GB
0015943 Mar 2000 WO
Related Publications (1)
Number Date Country
20110036592 A1 Feb 2011 US