Information
-
Patent Grant
-
6401639
-
Patent Number
6,401,639
-
Date Filed
Thursday, March 22, 200123 years ago
-
Date Issued
Tuesday, June 11, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Sutherland Asbill & Brennan, LLP
-
CPC
-
US Classifications
Field of Search
US
- 112 807
- 112 8073
- 112 78
- 112 8001
- 112 8005
- 112 8008
-
International Classifications
-
Abstract
Apparatus for feeding yam from a yam supply to a reciprocating needle of a multicolored patterned tufting apparatus comprising a dual yarn feeder for increased productivity of the tufting apparatus or increasing the number of different yams or both. The dual yam feeder includes two yam feeder components which are selectively and independently movable in and out of engagement with a driven roller.
Description
TECHNICAL FIELD
This invention relates generally to tufting apparatus for producing patterned textile goods such as carpet, upholstery, and the like, and more particularly to tufting apparatus for producing tufted goods having a multicolor pattern by selectively feeding different yarns to a row of reciprocating hollow needles which implant the yarns into a transversely shifting backing material. More particularly, this invention relates to a yarn feeding mechanism for use with such a tufting apparatus.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 4,549,496 to Kile discloses a tufting apparatus for producing patterned tufted goods using yarns of different colors. This apparatus is capable of selectively implanting yarns of different colors into a backing to produce a tufted product having a predetermined multicolored pattern. The patent apparatus employs multiple heads spaced across the width of a backing material. Each head comprises a hollow needle for penetrating the backing and implanting yarn tufts in the backing by reciprocating the head and feeding yarn through the needle pneumatically. This device uses a system of gears and rollers to select the desired yarn for implantation into the backing for each penetration by the needle. The multiple heads are stepped in synchronism across the backing for a distance corresponding to the spacing between the heads in order to implant a transverse row of yarn tufts. This process is repeated as the backing is advanced to complete the product. A computer controls the selection of yarn implanted by each needle for each penetration of the backing in order to reproduce the desired pattern in the finished goods.
The apparatus disclosed in the Kile patent and its method of operation have been subsequently modified. Such modifications are disclosed in U.S. Pat. No. 4,991,523; 5,080,028; 5,165,352; 5,158,027; 5,205,233; and 5,267,520, all to Ingram., and U.S. Pat. No. 5,588,383 to Davis et al. These subsequent patents disclose an apparatus in which the backing is shifted transversely relative to the reciprocating needles while the backing advances through the apparatus. Thus, rather than the multiple heads which carry the hollow needles being moved across the backing, the subsequent patents disclose an apparatus wherein the backing rather than the heads is shifted transversely. In addition, the device disclosed in the Ingram patents comprises a plurality of hollow needles carried on a widthwise extending member. As the yarn is implanted by the reciprocating needles, the backing is shifted in the transverse direction by an amount corresponding to the spacing between adjacent needles in order to implant a transverse row of tufts. A knife blade is associated with each needle and positioned on the opposite of the backing for cutting the yarn at the lower position of the needle.
The apparatus disclosed in the Ingram patents further includes a mechanism for supplying continuous lengths of the different yarns to the needles comprising a system of gears. More specifically, this yarn supply mechanism includes a main rotatable gear shaft tied to and driven by the main drive shaft that reciprocates the needles. A plurality of small gears extending along the length of the main gear shaft are selectively engagable with the main gear shaft to feed the desired yarns to the needles. The individual gears for feeding the yarns are selectively shifted in and out of meshing cooperation with the main gear shaft by air solenoids. Once the yarn is fed by the gear system, the yarn is drawn to and out of the needle by pressurized air from a manifold mounted to the reciprocating needle mounting bar.
Although the tufting apparatus disclosed in the Kile and Ingram patents performs well, there is a need for a tufting apparatus for producing patterned textile goods with increased throughput and increased reliability.
One factor determining the production rate of a tufting apparatus is the number of tufting needles per unit length of backing material. One problem, however, with increasing the number of tufting needles per unit length is that the number of yarn feeders increases as well. When producing multicolored pattern textile goods, a plurality of yarn feeders per tufting needle are required. Therefore, for each tufting needle added per unit length, a plurality of yarn feeders must be added. Thus, increasing the number of needles can overcrowd the tufting apparatus with yarn feeders.
SUMMARY OF THE INVENTION
This invention satisfies the foregoing need by providing an apparatus for feeding yarn from a yarn supply to a reciprocating needle comprising a dual yarn feeder including a first yarn feeder component and a second yarn feeder component. The dual yarn feeder component provides the capability of independently feeding two different yarns from what would be space normally occupied by a single yarn feeder. Thus, the present invention can double the productivity of a tufting apparatus or increase the number of different yarns which can be supplied per needle, or both.
More particularly, this invention encompasses an apparatus for feeding yarn from a yarn supply to a reciprocating needle comprising a driven roller and a first dual yarn feeder including a first yarn feeder component and a second yarn feeder component. The first yarn feeder component is disposed for selectively moving into peripheral engagement with a driven roller at a longitudinal location along the longitudinal axis of the driven roller and at a peripheral location about the driver roller periphery, and alternatively, moving out of peripheral engagement with the driven roller, such that when the first yarn feeder component is in peripheral engagement with the driven roller, the driven roller drives the first yarn feeder component and causes the yarn feeder component to feed the yarn. Likewise, the second yarn feeder component is disposed for selectively moving into peripheral engagement with the driven roller at the longitudinal location along the longitudinal axis of the driven roller and at a second peripheral location about the driven roller periphery displaced from the first peripheral location, and alternatively, moving out of peripheral engagement with a driven roller, such that when the second yarn feeder component is in peripheral engagement with the driver roller, the driven roller drives the second yarn feeder component and causes the second yarn feeder component to feed the yarn.
More particularly, the first and second yarn feeder components can comprise an actuator for moving the respective yarn feeder components into and out of peripheral engagement with the driven roller. Desirably, the apparatus includes a plurality of dual yarn feeders, including the first dual yarn feeder. The dual yarn feeders are disposed in series along the length of the driven roller. According to one embodiment, the first and second yarn feeder components are pivotally disposed and pivot into and out of engagement with the driven roller. The apparatus can further comprise a shaft wherein the first and second yarn feeder components are pivotally connected to the shaft for rotating movement independent of one another.
More particularly, the first and second yarn feeder components can each comprise a movable member and a pair of feed rollers rotatably mounted to the movable member. The first and second yarn feeder components extend from the shaft for rotation substantially perpendicular to the longitudinal axis of the driven roller and in a common plane. Still more particularly, each removable member can comprise a bearing portion proximate one end and a head extending from the bearing portion to a distal end. The bearing portion has a bore for receiving the shaft and the head holds the pair of feed rollers. According to one embodiment, the bearing portion is stepped inwardly and more narrowly than the head and the bearing portions of the first and second yarn feeder portions are disposed adjacent to one another on the shaft while the heads lie in a common plane.
The feed rollers mounted to the yarn feeder component heads can be peripherally engaged with one another so as to form a nip between the pair of feed rollers for receiving the yarn. In this embodiment, one of the pair of feed rollers is disposed for peripheral engagement with the driven roller so that when the one of the pair of feed rollers is engaged with the driven roller, the feed rollers feed the yarn through the nip. Desirably, the pair of feed rollers have meshing gear teeth and the drive roller has gear teeth for meshing with teeth of one of the pair of feed rollers.
This invention also encompasses an apparatus for producing patterned tufted fabric comprising the dual yarn feeder of this invention described above. This tufting apparatus comprises a tufting frame, a yarn applicator comprising a reciprocable needle for penetrating a backing at a stationary yarn applying region and implanting a yarn therein, a backing transport system mounted to the tufting frame for moving the backing past the stationary yarn applying region and moving the backing transversely relative to the stationary yarn applying region so that the yarn applicator implants the yarn in a transverse row upon selective successive penetrations by said needle, and the dual yarn feed mechanism of this invention.
Accordingly, an object of the present invention is to provide an improved apparatus for producing patterned tufted goods.
Another object of the present invention is to provide an apparatus and method for producing patterned tufted goods at an increased throughput.
Other objects, features and advantages of the present invention will become apparent from the following detailed description, drawings, and claims.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1
is a partial sectional elevation view of a tufting apparatus made in accordance with an embodiment of the present invention.
FIG. 2
is a partial side elevation view of a dual yarn feed mechanism which forms part of the tufting apparatus shown in FIG.
1
.
FIG. 3
is another partial side elevation view of the yarn feed mechanism shown in FIG.
2
.
FIG. 4
is an end elevation view of the dual yarn feed mechanism shown in FIG.
2
.
FIG. 5
is another end elevation view of the dual yarn feed mechanism shown in FIG.
2
.
DETAILED DESCRIPTION OF DRAWINGS
The tufting apparatus shown in
FIG. 1
includes a number of subsystems which will be identified briefly below and then described in more detail thereafter. First, the structure of the apparatus
10
will be described in detail followed by a detailed description of the operation of the tufting apparatus. Although the tufting apparatus is disclosed in detail hereinafter, some suitable subsystems of the tufting apparatus are disclosed in detail in U.S. Pat. Nos. 4,991,523; 5,080,028; 5,165,352; 5,158,027; 5,205,233; and 5,267,520, all to Ingram, and U.S. Pat. No. 5,588,383 to Davis et al., the disclosures of which U.S. Patents are hereby expressly incorporated herein by reference in their entirety.
Structure of the Tufting Apparatus
Generally described, the tufting apparatus
10
, which is best shown in
FIG. 1
comprises a tufting frame
12
supporting a backing transport system
14
for directing a backing
16
through the tufting apparatus, a row of needles
18
mounted to a needle drive system
20
for implanting tufts of yarn in the backing at a yarn applying region
21
, a yarn cutting system
22
for cutting the yarn as it is implanted, presser feet
24
, a pair of yarn feed mechanisms
26
for supplying continuous lengths of yarn from a yarn supply, such as a creel (not shown) to the needles, and a control system (not shown) for controlling the operation of the tufting apparatus so as to produce a patterned tufted product in accordance with a preselected pattern.
The term “tuft,” as used herein, encompasses both cut yarn stitches and loop yarn stitches, and the term “tufting” encompasses both the act of forming a cut yarn stitch and the act of forming a loop yarn stitch.
The length of the tufting apparatus
10
, the spacing of the needles
18
, and the number of needles in the apparatus can vary considerably depending on the product to be produced and the desired rate of production.
The Frame
The frame
12
of the tufting apparatus
10
is shown in FIG.
1
and comprises a horizontal I-shaped base frame
32
which includes an elongate member
34
extending perpendicularly between end members
36
. Vertical end frames
40
extend upwardly from the end members
36
. Each of the end frames
40
comprises a pair of spaced vertical members
44
and
46
, angled support bars
48
and
50
extending between the vertical members and the respective end members
36
. In each of the end frames
40
, a cutter system frame support bar
52
, a backing frame support bar
54
, and an upper frame support bar
56
are spaced from one another and extend between the vertical members
36
. A transverse backing support beam
58
extends between the vertical end frames
40
proximate the backing inlet side
59
of the tufting apparatus
10
. Another transverse support beam
60
extends between the vertical end frames
40
at the exit side
61
of the tufting apparatus
10
. Respective end panels
62
extend between the spaced vertical members
44
and
46
and between the backing frame and upper frame support bars
54
and
56
for supporting various components as described hereinbelow. A plurality of spaced vertical support bars (not shown) extend vertically between the transverse support beam
60
and elongate main drive housing
64
. The main drive housing
64
extends between the vertical end frames
40
and is mounted on top of the upper frame support bars
56
.
The interior of the main drive housing
64
is accessible through removable access panels
66
on top of the main drive housing.
The Backing Transport System
The backing transport system
14
transports the backing
16
through the tufting apparatus
10
while the reciprocating hollow needles
18
implant tufts of yarn in the backing at the yarn applying region
21
. The backing may be in the form of a continuous running web. The backing
16
is moving in the direction of the arrow in FIG.
1
and the area through which the backing passes through the tufting apparatus
10
is the yarn applying region
21
.
As shown in
FIG. 1
, the backing transport system
14
comprises an entry pin roller
70
and an exit pin roller
71
which are driven by respective electric motors (not shown). The motors maintain the backing
16
under tension as the backing passes the reciprocating needles
18
. The exit pin roller motor controls the tension of the backing
16
and the entry pin roller motor controls the velocity of the backing. The pin rollers
70
and
71
are mounted to the frame
12
and extend between respective brackets
75
and
76
. A guard assembly
77
is mounted to the frame
12
and extends alongside the entry pin roller
70
to shield the entry pin roller. The backing transport system
14
further comprises a pair of guide rollers
78
and
79
which cooperate with the pin rollers
70
and
71
, respectively, to guide the backing
16
. The guide rollers
78
and
79
are mounted to the frame
12
and extend between respective brackets
80
and
81
. The pin roller motors are connected to the pin rollers
70
and
71
with couplings.
A second pair of pin rollers
90
and
91
, which have smaller diameters than the entry and exit pin rollers
70
and
71
, are located closely adjacent to reciprocating needles
18
on the opposite sides of the backing
16
. These additional pin rollers
90
and
91
provide better control of the backing
16
in the area adjacent to where the yarn tufts are implanted. The smaller pin rollers
90
and
91
are carried on respective brackets
92
and
93
.
The backing transport system
14
further comprises a pair of bed plates
94
and
96
for supporting the backing
16
as the backing moves through the tufting apparatus
10
. One of the bed plates
94
is positioned below the backing
16
and upstream of the reciprocating needles
18
between the reciprocating needles and the entry pin roller
70
. The other of the bed plates
96
is positioned above the backing
16
and downstream of the reciprocating needles
18
between the reciprocating needles and the exit pin roller
71
. The bed plates
94
and
96
are transversely shiftable relative to the backing advance direction.
Each of the bed plates
94
and
96
are carried on a pair of transversely extending rods
100
and
102
affixed to the frame
12
. The bed plates
94
and
96
are connected at each end by respective connecting members
104
and
105
. The entry and exit pin rollers
70
and
71
are preferably also carried by the shiftable bed plates
94
and
96
, respectively. The connecting members
104
and
105
are connected to respective electric motors (not shown) with respective commercially available ball screw drives. The ball screw drives should be capable of producing very small and precisely controlled transverse movements when rotated by the motors. Specifically, this precision mechanism should enable precisely controlled incremental movements of the order of one-tenth of an inch or less. The motors and the ball screw drives shift the bed plates
94
and
96
, as well as the pin rollers
70
and
71
, transversely toward the longitudinal direction of advancement of the backing which produces a corresponding transverse shifting movement of the backing
16
so that each needle
18
may insert yarn into the backing at a number of transverse locations. The guide rollers
78
and
79
may also be shifted transversely in substantial correspondence with the pin rollers
70
and
71
by a second, less precise shifting mechanism.
The Needle Drive System
The needles
18
of the needle drive system
20
are reciprocated by adjustable cam assemblies
110
which are coupled to the needles by respective link assemblies
112
. The adjustable cam assemblies
110
are shown in FIG.
1
and comprise a circular cam lobe member
114
rotatably supported by bearings within a circular portion of a yoke member
116
. The cam lobe members
114
are carried on and driven by a transversely extending rotatable shaft
118
which is offset from the center of each cam lobe member and preferably supported by bearings on a bearing support
120
. The link assemblies
112
comprise a coupling link
122
which is pivotally connected to a yoke member
116
and connected to a vertically extending push rod
124
. Each vertically extending push rod
124
extends through and is guiding for vertically reciprocal movement by bearings
126
mounted to the bottom of the main drive housing
64
.
The lower ends of the push rods
124
are connected to a transversely extending needle mounting bar
130
, which is also referred to as a yarn exchanger. The needles
18
are mounted to the mounting bars
130
. In
FIG. 1
, only one needle
18
is illustrated, but it should be understood that a plurality of needles
18
extend along the length of the needle mounting bar
130
. Upon rotation of the shaft
118
, the adjustable cam assemblies
110
rotate to impart a reciprocating movement to the yoke members
116
and, in turn, a similar movement to the needles
18
via the link assemblies
112
to cause the needles to repetitively penetrate and withdraw from the backing
16
.
The needle mounting bar
130
is rectangular in cross-section, and for each needle
18
, has a central passage (not shown) extending from an inlet at the top of the mounting bar to a funnel and a plurality of yarn passages (not shown) surrounding each central passage and extending from respective inlets in the top of the mounting bar to the funnel. Each funnel extends from an inlet an outlet at the bottom of the mounting bar. This arrangement is illustrated in detail in U.S. Pat. No. 5,165,352 already incorporated herein by reference.
The needles
18
each have a hollow passage extending from an inlet to an outlet at a pointed tip. The structure of the needles is disclosed in more detail in U.S. Pat. No. 4,991,523, the disclosure of which is already expressly disclosed herein by reference. Each needle
18
is disposed such that the inlet of the needle is in communication with the outlet of the respective funnel.
The needle drive system
20
is driven by electric motors (not shown) operatively connected to opposite ends of the main drive shaft
118
and mounted to opposite ends of the main drive housing
64
for rotating the main drive shaft. For high product throughput, the main drive motors should rotate the main drive shaft
118
at speeds up to about 1000 rpm.
Each rotation of the main drive shaft
118
causes the needles
18
to penetrate and then withdraw from the backing
16
. In other words, each rotation of the main drive shaft
118
causes one needle reciprocation cycle, also referred to as a tufting cycle, which includes a downstroke and an upstroke of the needles
18
.
The Yarn Cutting System
As shown in
FIG. 1
, the yarn cutting system
22
is positioned below the backing transport system
14
and comprises a plurality of knife blades
140
, one positioned below each of the needles
18
for cutting the yarn implanted into the backing
16
by the needle at the downstroke of each tufting cycle. The knife blades
140
are arranged to cooperate with the needles
18
by sliding over the respective angled tips of the needles
18
in a shearing-like action to cut the yarn that is ejected from the needles. The yarn cutting system
22
further comprises a blade holder
142
, a mechanism
144
for reciprocating the knife blade
140
, and a frame
146
for supporting the knife blade, blade holder, and reciprocating mechanism.
The structure of the yarn cutting system
22
is disclosed in more detail in U.S. Pat. No. 5,588,383, the disclosure of which is already expressly disclosed herein by reference.
The Presser Feet
To prevent the needles
18
from raising the backing
16
when the needles are removed from the backing during the upstroke of the needle drive system
20
, a plurality of presser feet
24
are disposed adjacent the needles transversely across the tufting apparatus
10
and slightly above the backing. The presser feet
24
are connected to an elongated rail member
150
, shown in
FIG. 1
, with means such as screws. The rail member
150
is connected to the underside of the main drive housing
64
with arms
152
to fix the presser feet
24
to the tufting apparatus frame
12
.
Each of the presser feet
24
extend below the needles
18
and have a plurality of bores corresponding to each needle and through which the respective needles may reciprocate freely. Air conduits
154
communicate with each of the needle bores. Pressurized air is blown through the conduits
154
by a pressurized air pipe
156
.
Pressurized air is directed through the conduits
154
and into the needle bores as the needles
18
are withdrawn from the backing
16
. This air forces the severed limb of yarn, which is the limb forming the last backstitch and which is no longer connected to the needle, down into the opening in the backing before the needle makes a subsequent opening. This eliminates the excess yarn on the rear of the backing and precludes the yarn from forming a backstitch raised above the surface of the backing material. Each air conduit
154
is desirably disposed at an angle of about 45° relative to the axis of the respective needle
18
. The presser feet
154
are similar to those disclosed in U.S. Pat. No. 5,158,027, the disclosure of which is already expressly incorporated herein by reference.
The Yarn Supply System
The tufting apparatus
10
supplies a plurality of different yarns to each needle
18
of the tufting apparatus. The yarns are desirably of a different color so that the tufting apparatus
10
can be used to make multicolor patterned tufted goods such as carpet. The tufting apparatus
10
has a plurality of needles spaced apart. The particular number of needles depends on the product to be produced and the level of throughput desired. The tufting apparatus
10
is capable of selecting, for any given needle
18
, on any given needle reciprocation cycle, one of the plurality of different yarns and delivering the desired length of that yarn to the respective needle. In addition, the tufting apparatus is capable of simultaneously withdrawing one yarn from a needle
18
and inserting another yarn into that needle in the same needle reciprocation cycle.
Yarn is supplied to the tufting apparatus
10
through overhead tubes from a creel (not shown). The creel generally comprises a frame for holding a plurality of yarn spools. The structure and function of such creels is well known to those skilled in the art and is not discussed herein in detail.
The yarn feed mechanisms
26
are disposed adjacent the push rod
124
of the yarn cutting system
22
such that the push rod is between the yarn feed mechanisms. The yarn feed mechanisms
26
extend between the vertical end frames
40
of the tufting frame
12
along the inlet and exit sides
59
and
61
of the tufting apparatus. The yarn feed mechanisms
26
on each side of the tufting apparatus
10
are identical to each other, but in reverse image. Each yarn feed mechanism
26
comprises a driven roller
162
extending between the end panels
62
of the vertical end frames
40
. In addition, each yarn feed mechanism
26
includes a plurality of dual yarn feeders
164
which are driven by the driven roller
162
. The plurality of dual yarn feeders
164
extend along the length of the tufting apparatus adjacent the respective driven rollers
162
and comprise first and second yarn feeder components
166
and
168
pivotally mounted to a common stationary shaft. The tufting apparatus
10
includes a yarn feeder component
164
for each yarn fed from the yarn supply to the reciprocable tufting needles
18
. Accordingly, there are several dual yarn feeders
164
associated with each tufting needle
18
.
Each driven roller
162
is concentrically mounted about a drive shaft
170
which extends the length of the tufting apparatus
10
. Each drive shaft
170
is driven by an electric motor (not shown). Each driven roller
162
has gear teeth
172
about its periphery
174
. Although the driven roller
162
can be made of any suitably rigid material, each driven roller
162
is desirably made of plastic and is segmented so that only a portion of the driven roller
162
has to be replaced if the driven roller is damaged.
Each of the yarn feeder components
166
and
168
are capable of feeding a yarn to one of the tufting needles
18
when driven by the respective driven roller
162
. Each of the yarn feeder components
166
and
168
comprise a moveable member
176
including a rounded bearing portion
178
at one end
180
and an elongate head
182
extending from the one end to a distal end
184
. The bearing portion
178
has a bore
186
fitted with a bearing
188
for receiving the stationary shaft
168
. The yarn feeder components
166
and
168
pivot about the stationary shaft
169
.
The head
182
of the moveable member
176
forms a gap
190
for housing a pair of geared feed rollers
192
and
194
. The geared feed rollers
192
and
194
are pivotally mounted to the head
182
with journal pins
196
so that the teeth of the geared feed rollers are engaged to form a nip
200
between the feed rollers. One of the feed rollers
192
is disposed so as to selectively engage and disengage from the teeth
172
of the respective driven roller
162
.
A leaf spring
174
attached to the head
182
of the moveable member
176
holds the journal pin
196
of the other gear feed roller
194
in place. The leaf spring
204
is removable so that the other gear feed roller
194
can be removed for maintenance of the yarn feeder component
166
or
168
, such as when clearing a yarn jam.
The moveable member
176
also has a yarn feed channel
206
leading from the head
182
through the bearing portion
178
and yarn a guide pin
207
disposed in the gap
190
of the head
182
near the distal end
184
of the moveable member for guiding yarn through the yarn feeder component
166
or
168
.
Independently operated pneumatic actuators
208
pivot respective yarn feeder components
166
and
168
into and out of engagement with the respective driven roller
162
and are mounted on support bars
209
and
210
extending between the vertical ends of the tufting apparatus
10
. Each pneumatic actuator
208
includes a reciprocating rod
212
which engages a pivotable arm
214
attached to the distal end
184
of the moveable member head
182
. Pneumatic cylinders
216
mounted to one of the support bars
210
provide pressurized air for operating the pneumatic actuators
208
. In addition to pneumatic actuators, other reciprocating devices such as an electric solenoid or a hydraulic actuator are also suitable.
The dual yarn feeders
164
feed yarns to the tufting needles
18
. When producing pattern colored carpet, the tufting apparatus
10
is arranged such that a plurality of yarn feeder components
166
and
168
are capable of delivering a plurality of different yarns to each needle
18
. Therefore, there are a plurality of yarn feeder components
167
and
168
per hollow needle
18
. The rate at which the tufting apparatus
10
produces pattern tufted carpet depends in part on the number of needles per width of carpet backing. Therefore, as explained above, it desirable to have many needles
18
per unit length of the tufting apparatus to maximize the production capacity of the tufting apparatus. However, while there may be room to tightly pack needles along the length of the tufting apparatus
10
, the number of yarn feeders necessary to provide sufficient numbers of yarns per needle can overcrowd the tufting apparatus. Thus, the dual yarn feeder
164
of this invention is advantageous in that it provides two yarn feeder components
166
and
168
at each yarn feeder position along the length of the tufting apparatus. Because the first and second yarn feeder components
166
and
168
of each dual yarn feeder
164
are pivotable independently of one another, the dual yarn feeder of this invention can double the production rate of the tufting apparatus
10
over conventional tufting apparatuses. In the tufting apparatus
10
, the dual yarns feeders
164
are pivotally mounted to the stationary shaft
169
as closely as possible to one another. The additional yarn feeding capacity provided by the dual yarn feeders
164
can also be used to increase the number of possible yarns supplied to each needle while maintaining good production rate.
Particularly, the dual yarn feeders
164
are mounted to the stationary shaft
169
so that the first and second yarn feeder components
166
and
168
pivot about the stationary shaft in a direction substantially perpendicular to the drive shaft
170
. The bearings
198
of the first and second yarn feeder components
166
and
168
are concentrically aligned and the bearing portions
178
of the movable members
176
fit closely together while the heads
182
of the mating first and second yarn feeder components
166
and
168
extend outwardly from one another. The bearing portions
178
of the movable members
176
are stepped inwardly so that the bearing portions of the first and second yarn feeder components
166
and
168
fit adjacent one another while the respective heads
182
extend perpendicularly to the longitudinal axis of the respective driven roller
162
in a common plane and at the same longitudinal location along the longitudinal axis of the driven roller. The first and second yarn feeder components
166
and
168
are arranged, to engage the driven roller at different peripheral locations about the periphery of the driven roller.
More particularly, the first yarn feeder component
166
is disposed for selectively moving into peripheral engagement with the driven roller
162
by the respective actuator
108
at a particular peripheral location about the driven roller periphery, and alternatively, moving out of peripheral engagement with the driven roller. Likewise, the second yarn feeder component
164
is disposed about the stationary shaft
169
for selectively moving into peripheral engagement with the driven roller
162
by the respective actuator
108
along the longitudinal axis of the driven roller at the same longitudinal location as the first yarn feeder component and at a second peripheral location about the driven roller periphery displaced from the first peripheral location where the first yarn feeder component engages the drive roller periphery, and alternatively, moving out of peripheral engagement with the driven roller. The actuators
208
selectively pivot the first and second yarn feeder components
166
and
168
into and out of engagement with the driven roller. When the yarn feeder components
166
and
168
are engaged with the drive shaft, the teeth
198
of one of the gear feed rollers
192
engage the gear teeth
172
of the driven roller causing the gear feed rollers to rotate and feed yarn through the dual yarn feeder
164
toward the respective tufting needle
118
. The gear feed rollers
192
and
194
do not feed yarn, but rather hold yarn still when not engaged with the respective driven roller
162
.
A stationary manifold bar
224
extends between the vertical end frames
40
of the tufting frame
12
and receives the yarn
160
from each of the yarn feeders
164
along the length of the tufting apparatus. The manifold bar
224
has a plurality of passageways through which the yarns
160
pass. These passageways (not shown) lead the yarns to respective flexible yarn delivery tubes
228
which extend from the manifold bar
224
to respective yarn passageways in the needle mounting bar
130
. In addition, the manifold bar
224
includes a plurality of respective pressurized air conduits for receiving pressurized air and directing it through the yarn passageways and the manifold bar and flexible yarn delivery tubes
228
to force the yarns
160
through the respective yarn delivery tubes, through the passageways in the needle mounting bar and through the hollow needles
18
.
U.S. Pat. No. 5,080,028, already incorporated herein by reference, discloses a mechanical system for retracting yarns from the needles when other yarns are desired to be implanted. The retraction mechanism includes a reciprocating plunger disposed between two yarn guides. The reciprocating plunger pulls the yarn to be retracted out of the needle and an independent pneumatic mechanism, such as an air solenoid, drives the reciprocating plunger. The reciprocating plunger operates in unison with the pneumatic mechanism which feeds the yarn to the needles. Though not shown, such a system is desirably incorporated into the tufting apparatus
10
.
The Control System
The control system of the tufting apparatus is a programmable computer which generally receives instructions from an operator for making a particular product such as a patterned carpet and controls the various subsystems of the tufting apparatus, including the backing transport system
14
, the needle drive system
20
, the yarn cutting system
22
, and the yarn feed mechanisms
26
, in accordance with the operator's instructions to make the desired product. A computer programmer of ordinary skill in the art can obtain or prepare the appropriate software to carry out the respective functions of the control system.
Desirably, patterns such as multicolored patterns for carpet are scanned using a conventional multicolor pattern scanning device, translated into a pattern file, and downloaded onto a floppy disk or the hard drive of the computer. The operator can also input instructions for the timing of the tufting operation.
Operation of the Tufting Apparatus
Once the tufting apparatus
10
is properly set up, the tufting apparatus can produce, in one pass, a tufted multicolored patterned carpet. For example, the tufting apparatus
10
can be set up to deliver twelve different yarns to each needle, but also could be set up to produce carpet having a pattern with less than twelve colors. Preferably, the tufting apparatus
10
is set up to deliver six different yarns to each needle. With fewer yarns per needle, more needles per length of backing can be installed to increase the production rate of the tufting apparatus. In addition, the tufting apparatus
10
can produce a patterned carpet having some cut tufts and some loop tufts. The cut and loop tufts can be arranged to form a pattern themselves.
To set up the tufting apparatus
10
, the computer is programmed with the appropriate pattern and timing data, the air pressures for the pneumatic systems and the presser foot are set to levels appropriate for the types of yarns being used, the backing
16
is fed into the backing transport system
14
, and the yarns are mounted on the creel and fed through overhead tubes, the yarn feed mechanisms
26
, and the yarn delivery tubes
228
to the needle drive system
20
.
The computer is programmed with the stitch gauge of the pattern being used so that the backing advance motors, the backing shifting motors and the main drive motors cooperate to reproduce the desired pattern in the tufted product. For example, if the needles
18
in the tufting apparatus
10
are spaced 1″ apart, and if the gauge, which is the spacing between the adjacent tufts, is 10, then there are ten tufts per inch along a transverse row of tufts. Accordingly, the backing shifting motors must shift ten times per inch to produce the transverse movement of the backing
16
. To produce a tufted product without visible interfaces between stitches made by adjacent needles, the backing advance must move constantly while the backing shifting motors shift incrementally back and forth during tufting by the needles
18
. This actually produces a chevron pattern of tufts which, in a finished tufted product, is not visible on the face of the product. The method for producing such a chevron pattern is disclosed in detail in U.S. Pat. No. 5,205,233, the disclosure of which is incorporated herein in its entirety.
The tufting operation is begun by the operator by sending a start signal to the computer. The backing transport system
14
, the needle drive system
20
, the yarn cutting system
22
, and the yarn feed mechanism
26
then begin simultaneous operation to produce carpet having the pattern being implemented by the computer. Each full rotation of the main drive shaft
118
is a cycle of the tufting apparatus
10
. Through the adjustable cam assemblies
110
and the link assemblies
112
, the needles
18
are reciprocated by the rotation of the main drive shaft
118
. For every rotation of the main drive shaft
118
, the needles
18
reciprocate through a full cycle which includes a downstroke and upstroke. During each reciprocation cycle of the needle drive system
20
, the needles
18
can implant a yarn tuft into the backing
16
. As the backing advance motors advance the backing
16
and the backing shifting motors move the backing transversely to the direction of advancement of the backing, the reciprocating needles
18
penetrate the backing and implant yarn in the backing successively along transverse rows.
During each cycle of the tufting apparatus
10
, yarns are fed to the needles
18
by the yarn feeders
164
. The yarn feeders can feed a yarn to each needle
18
during each stroke so that a yarn is tufted by each needle at each penetration of the backing
16
by the needles. In accordance with data sent by the computer to tufting apparatus
10
, the yarn feed mechanisms
26
either feed yarn, retract yarn, or hold yarn in accordance with the pattern being implemented by the computer. During each cycle of the tufting apparatus, one yarn feeder component
166
or
168
per needle
18
can be feeding yarn, while the yarn feeder components associated with the same needle are holding yarn.
As best shown in
FIGS. 2 and 3
, each yarn
160
is feed by a respective yarn feeder component
166
or
168
toward the yarn manifold
224
. The pair of feed rollers
192
and
194
and the moveable member
176
of the yarn feeder
164
feed the yarn
160
through the nip
200
between the feed rollers. When it is time for a particular yarn
160
to be feed, the actuator
208
for the respective yarn feeder component
166
or
168
pivots the moveable member
176
of the yarn feeder so that one of the feed rollers
192
engages the respective driven roller
162
. The driven roller
162
drives the pair of feed rollers
192
and
194
so that the yarn
160
is pulled from the yarn supply, through the nip
200
between the feed rollers and out of the moveable member
176
toward the adjacent manifold bar
224
and is driven by pressurized air from the manifold bar through the respective flexible yarn delivery tube
228
to the needle mounting bar
130
. Lastly, the yarn travels from the needle mounting bar
130
through the respective needle
18
and out of the end of the needle whereupon the yarn is sheared by the respective cutting blade
140
of the yarn cutting system
22
. The cut yarn forms a tuft in the backing
16
.
When it is desirable to feed a different yarn from the dual yarn feeder
164
to the associated tufting needle
18
, the respective actuator
208
moves the first yarn feeder component
166
out of engagement with the driven roller
162
and the actuator associated with the second yarn feeder component
168
moves the second yarn feeder component into engagement with the driven roller. With the dual yarn feeder
164
of this invention, productivity of the tufting apparatus
10
is substantially enhanced.
It should be understood that the foregoing relates to particular embodiments of the present invention and that numerous changes can be made therein without departing from the scope of the invention as defined by the following claims.
Claims
- 1. An apparatus for feeding a yarn from a yarn supply to a reciprocating needle comprising:a driven roller having a longitudinal axis and a periphery; and a first dual yarn feeder including a first yarn feeder component and a second yarn feeder component, the first yarn feeder component disposed for selectively moving into peripheral engagement with the driven roller at a longitudinal location along the longitudinal axis of the driven roller and at a peripheral location about the driven roller periphery, and alternatively, moving out of peripheral engagement with the driven roller, such that when the first yarn feeder component is in peripheral engagement with the driven roller, the driven roller drives the first yarn feeder component and causes the first yarn feeder component to feed the yarn, the second yarn feeder component disposed for selectively moving into peripheral engagement with the driven roller at the longitudinal location along the longitudinal axis of the driven roller and at a second peripheral location about the driven roller periphery displaced from the first peripheral location, and alternatively, moving out of peripheral engagement with the driven roller, such that when the second yarn feeder component is in peripheral engagement with the driven roller, the driven roller drives the second yarn feeder component and causes the second yarn feeder component to feed the yarn.
- 2. Apparatus as in claim 1 wherein the first yarn feeder component comprises an actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and the second yarn feeder component comprises an actuator for moving the second yarn feeder component into and out of peripheral engagement with the driven roller.
- 3. Apparatus as in claim 2 further comprising a plurality of dual yarn feeders including the first dual yarn feeder, the dual yarn feeders disposed in series along the length of the driven roller.
- 4. Apparatus as in claim 1 wherein the first and second yarn feeder components are pivotally disposed and pivot into and out of engagement with the driven roller.
- 5. Apparatus as in claim 4 further comprising a shaft, wherein the first and second yarn feeder components are pivotally connected to the shaft for rotating movement independent of one another.
- 6. Apparatus as in claim 5 wherein the first and second yarn feeder components each comprise a movable member and a pair of feed rollers rotatably mounted to the movable member, the first and second yarn feeder components extending from the shaft for rotation substantially perpendicularly to the longitudinal axis of the driven roller and in a common plane.
- 7. Apparatus as in claim 6 wherein each movable member comprises a bearing portion proximate one end and a head extending from the bearing portion to a distal end, the bearing portion having a bore for receiving the shaft and the head holding the pair of feed rollers, the bearing portion stepped inwardly and more narrow than the head and the bearing portions of the first and second yarn feeder components disposed adjacent one another on the shaft while the heads lie in the common plane.
- 8. Apparatus as in claim 1 wherein the first and second yarn feeder components each comprise a movable member and a pair of feed rollers rotatably mounted to the movable member, the feed rollers peripherally engaged with one another so as to form a nip between the pair of feed rollers for receiving the yarn, one of the pair of feed rollers disposed for peripheral engagement with the driven roller so that when the one of the pair of feed rollers is engaged with the driven roller, the feed rollers feed the yarn through the nip.
- 9. Apparatus as in claim 8 wherein the pair of feed rollers have meshing gear teeth and the drive roller has gear teeth for meshing with teeth of one of the pair of feed rollers.
- 10. Apparatus as in claim 8 wherein:one end of the movable yarn feeder member of the first yarn feeder component is connected to a first actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and an opposite end of the movable yarn feeder member of the first yarn feeder component is pivotally disposed; and one end of the movable yarn feeder member of the second yarn feeder component is connected to a second actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and an opposite end of the movable yarn feeder member of the second yarn feeder component is pivotally disposed.
- 11. An apparatus for producing patterned tufted fabric comprising:a tufting frame; a yarn applicator comprising a reciprocable needle for penetrating a backing at a stationary yarn applying region and implanting a yarn therein; a backing transport system mounted to the tufting frame for moving the backing past the stationary yarn applying region and moving the backing transversely relative to the stationary yarn applying region so that the yarn applicator implants the yarn in a transverse row upon selective successive penetrations by said needle; and a first yarn feed mechanism for feeding the yarn from a yarn supply to the reciprocating needle comprising: a driven roller having a longitudinal axis and a periphery; and a first dual yarn feeder including a first yarn feeder component and a second yarn feeder component, the first yarn feeder component disposed for selectively moving into peripheral engagement with the driven roller at a longitudinal location along the longitudinal axis of the driven roller and at a peripheral location about the driven roller periphery, and alternatively, moving out of peripheral engagement with the driven roller, such that when the first yarn feeder component is in peripheral engagement with the driven roller, the driven roller drives the first yarn feeder component and causes the first yarn feeder component to feed the yarn in a path from the first yarn feeder component to the reciprocating needle, the second yarn feeder component disposed for selectively moving into peripheral engagement with the driven roller at the longitudinal location along the longitudinal axis of the driven roller and at a second peripheral location about the driven roller periphery displaced from the first peripheral location, and alternatively, moving out of peripheral engagement with the driven roller, such that when the second yarn feeder component is in peripheral engagement with the driven roller, the driven roller drives the second yarn feeder component and causes the second yarn feeder component to feed the yarn in a path from the second yarn feeder component to the reciprocating needle.
- 12. Apparatus as in claim 11 wherein the first yarn feeder component comprises an actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and the second yarn feeder component comprises an actuator for moving the second yarn feeder component into and out of peripheral engagement with the driven roller.
- 13. Apparatus as in claim 12 wherein the first yarn feed mechanism comprises a plurality of dual yarn feeders including the first dual yarn feeder, the dual yarn feeders disposed in series along the length of the driven roller.
- 14. Apparatus as in claim 13 further comprising a second yarn feed mechanism disposed opposite the first yarn feed mechanism, wherein the yarn applicator is disposed between the first and second yarn feed mechanisms.
- 15. Apparatus as in claim 11 wherein the first and second yarn feeder components are pivotally disposed and pivot into and out of engagement with the driven roller.
- 16. Apparatus as in claim 15 wherein the first and second yarn feeder components are pivotally connected to a common shaft for rotating movement independent of one another.
- 17. Apparatus as in claim 16 wherein the first and second yarn feeder components each comprise a movable member and a pair of feed rollers rotatably mounted to the movable member, the first and second yarn feeder components extending from the common shaft for rotation substantially perpendicularly to the longitudinal axis of the driven roller and in a common plane.
- 18. Apparatus as in claim 17 wherein each movable member comprises a bearing portion proximate one end and a head extending from the bearing portion to a distal end, the bearing portion having a bore for receiving the shaft and the head holding the pair of feed rollers, the bearing portion stepped inwardly and more narrow than the head and the bearing portions of the first and second yarn feeder components disposed adjacent one another on the shaft while the heads lie in the common plane.
- 19. Apparatus as in claim 11 wherein the first and second yarn feeder components each comprise a movable member and a pair of feed rollers rotatably mounted to the movable member, the feed rollers peripherally engaged with one another so as to form a nip between the pair of feed rollers for receiving the yarn, one of the pair of feed rollers disposed for peripheral engagement with the driven roller so that when the one of the pair of feed rollers is engaged with the driven roller, the feed rollers feed the yarn through the nip and along the path.
- 20. Apparatus as in claim 19 wherein the pair of feed rollers have meshing gear teeth and the drive roller has gear teeth for meshing with teeth of one of the pair of feed rollers.
- 21. Apparatus as in claim 19 wherein:one end of the movable yarn feeder member of the first yarn feeder component is connected to a first actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and an opposite end of the movable yarn feeder member of the first yarn feeder component is pivotally disposed; and one end of the movable yarn feeder member of the second yarn feeder component is connected to a second actuator for moving the first yarn feeder component into and out of peripheral engagement with the driven roller and an opposite end of the movable yarn feeder member of the second yarn feeder component is pivotally disposed.
- 22. Apparatus as in claim 11 wherein the reciprocating needle is a hollow needle.
- 23. Yarn feeder comprising:a movable member including a bearing portion proximate one end and ahead extending from the bearing portion to a distal end; and a pair of feed rollers rotatably mounted to the movable member head, wherein the bearing portion has a bore for receiving a shaft and the bearing portion is stepped inwardly and more narrow than the head.
- 24. Apparatus as in claim 23 wherein the feed rollers are peripherally engaged with one another so as to form a nip between the pair of feed rollers for receiving the yarn and one of the pair of feed rollers is disposed for peripheral engagement with a driven roller so that when the one of the pair of feed rollers is engaged with the driven roller, the feed rollers feed the yarn through the nip.
- 25. Apparatus as in claim 24 wherein the pair of feed rollers have meshing gear teeth.
US Referenced Citations (23)
Foreign Referenced Citations (1)
Number |
Date |
Country |
1477640 |
Jun 1977 |
GB |