The disclosures of U.S. patent application Ser. No. 17/843,011, filed Jun. 17, 2022, and U.S. Provisional Patent Application No. 63/212,770, filed Jun. 21, 2021, are incorporated by reference herein for all purposes as if set forth in their entireties.
The present disclosure generally relates to tufting machines and methods of forming tufted fabrics. In particular, the present disclosure relates to tufting machines including selectively controllable gauge parts, as well as methods of forming patterned tufted fabrics.
In the tufting field, particularly with regard to commercial and hospitality carpets, there has been increased demand for the production of carpets and rugs with new visual patterns, including the use of multiple different colors, in an effort to keep up with changing consumer tastes and increased competition in the marketplace. Carpet designers and manufacturers thus have placed increased emphasis on the creation of newer, different and more eye-catching patterns for carpets, rugs and other tufted fabrics, including patterns having the selective placement and display of yarns of particular colors or types within pattern fields thereof, and with the resultant tufted fabrics being formed with a substantially true pattern density of the visible tufts of the pattern. It further has been desirable to try to replicate as closely as possible the look and feel of patterned carpets, rugs or other fabrics formed on a loom, but which can be created and formed therein on broadloom tufting machines so as to enable increased efficiencies in production of such patterned tufted carpets, rugs and/or other fabrics. In addition, there generally is a desire to provide increased control of the formation of tufts of selected colors or types of yarns for formation of patterned carpets, without substantially affecting the operation of tufting machines, including increasing the need for maintenance or placement of parts such as gauge parts thereof, or the output of such tufting machines.
Accordingly, it can be seen that a need exists for a system and method of forming tufted fabrics such as carpets and rugs that addresses these and other related and unrelated problems in the art.
Briefly described, the present disclosure generally relates to a tufting machine and method of forming patterned tufted articles in which the placement and the pile height of tufts of yarns or stitches formed in a backing can be selectively controlled so as to enable formation of patterned tufted articles, such as carpets, having a variety of pattern effects, including the formation of tufted articles with free-flowing multi-color and/or multi-pile height patterns, as well as having substantially woven or loom formed appearances.
In one aspect, the tufting machine typically will include a control system for controlling the operative elements of the tufting machine to form or create tufted articles according to desired or designed patterns. The resultant tufted articles can include various pattern effects, including having multiple, varied or different pile heights, different types of tufts in the same and/or varying tuft rows, and other textured effects, as well as the placement of various color and/or type yarns to be visible at selected locations and pile heights across the backing; with, at least in some embodiments, the resultant tufted articles being provided with a density of retained and/or visible color yarns/stitches per inch that substantially matches a desired or prescribed pattern density or stitches per inch for the pattern being formed/tufted.
In embodiments, the tufting machine will include one or more needle bars having a series of needles mounted therealong. The needles can be arranged in in-line, staggered or other arrangements. As a backing material is fed through a tufting zone of the tufting machine, yarns will be introduced therein as the needles are reciprocated into and out of the backing material. A shift mechanism further can be provided for shifting the needle bar(s) transversely across the tufting zone, and multiple shift mechanisms can be utilized as needed. The shift mechanism(s) generally will be operable in response to instructions or communications from the control system, for stepping or shifting the needle bar(s) transversely across the backing in accordance with programmed and/or designed pattern shift steps for a pattern being tufted to present the yarns carried thereby to tuft or stitch locations along/across the backing.
The tufting machine further generally will include at least one yarn feed mechanism or attachment for controlling the feeding of the yarns to their respective needles. Such a yarn feed mechanism or pattern attachment can include, without limitation, various roll, scroll, servo-scroll, single end, double or multiple end yarn feed attachments, such as, for example, a Yarntronics™ or Infinity™/Infinity IIE™ yarn feed attachment as manufactured by Card-Monroe Corp. Other types of yarn feed control mechanisms also can be used. The control system generally will include programming for control of the at least one yarn feed mechanism or pattern attachment, which can be operated to selectively control feeding of yarns to their needles for forming tufts of yarns, which can include forming tufts having selected pile heights and/or forming no tufts, to create the desired pattern appearance.
In some embodiments, the control system can further comprise or operate with a stitch distribution control system; through which control of the backing feed and control of the operation of the shift mechanism(s) for shifting of at least a portion of the needles can be coordinated with control of the at least one yarn feed mechanism such that various yarns can be presented to various stitch locations or pixels, and the yarns to be shown on the face or surface of the tufted article generally can be fed in amounts sufficient to form tufts of desired heights while the non-appearing yarns, which are not to be shown in the tufted field generally will not be picked-up when the gauge part is lowered to a no-sew position. Thus, for each pixel or stitch location of the pattern, a series of yarns can be presented, and pick-up of the yarns not selected to be visible or appearing at such a stitch location can be avoided when the gauge parts are in a no-sew position. In addition, in some embodiments, the yarn feed also can be controlled to include withdrawing or pulling some yarns lower, to form sculptured or varying pile height effects, and/or lengthening loops of yarns picked up by movement of the gauge parts in conjunction with the yarn feed control. In addition, some yarns can be pulled back or low out to a level or extent so as to leave a sufficient portion of a non-appearing within the backing to hold or tack the non-selected or non-appearing yarns to the backing without interference with the face or retained, visible tufts of yarns of the pattern by such non-appearing yarns substantially minimized. Thus, in embodiments, only desired or selected yarns/colors to be placed at a particular stitch location may be retained at such stitch location, and can form tufts or different pile heights and colors; while the remaining yarns/colors can be removed or pulled back to an extent that they can be tacked or held to the backing, but will not appear or show in the pattern fields being sewn at that time. The control system further can control and coordinate operation of one or more selected gauge part assemblies with the yarn feed mechanism(s) of the tufting machine according to the instructions for the pattern being formed to control selective formation of loops and/or tufts of yarns, and the lengths or pile heights thereof.
In addition, a gauge part assembly is located below the backing material. The gauge part assembly generally will comprise a series of gauge parts, including, for example and without limitation, loopers, hooks, level cut loop loopers, cut/loop clips, etc. . . . The gauge parts will be positioned along the tufting zone, and are moveable in a first direction so as to be reciprocated into engagement with the needles as the needles penetrate the backing material to pick loops of yarns therefrom. In some embodiments, the gauge parts further each can be selectively movable in a second or additional direction that is generally normal to their direction of reciprocation. For example, the gauge parts can be moved in a substantially vertical, e.g., up-and-down, motion with respect to the stroke or reciprocation of the needles onto and out of the backing, as well as being moved in a reciprocating motion toward and away from the needles, to selectively pick up and form loops of yarns in the backing material. In addition, the movement of the gauge parts in their second direction (e.g. in a vertical or other direction) can be controlled so as to form varying length loops of yarns of varying pile heights in the backing material, including formation of different pile height loops or even no loops of yarns in the backing. In still further embodiments, other configurations and/or combinations of loop pile loopers, cut pile hooks, cut/loop hooks, level cut loopers or hooks, and/or other gauge parts also can be used.
In some embodiments, the gauge parts can include loopers or hooks, each with a body slidably mounted within a gauge module or gauge block, and having a first portion and a second portion, which can include an elongated throat terminating at a pointed proximal end or bill. The first portion of the body of each gauge part can extend through the gauge block or module and can be coupled at a distal end to a drive system including a plurality of actuators that each can be selectively actuated to control movement of the gauge parts in their second direction, and which will be coupled to an associated or corresponding one of the gauge parts by a connector assembly.
In some embodiments, the gauge modules each can include a module or block body having a first of rearward section adapted to couple or mount along a gauge bar, and a second or forward section having at least one channel or passage formed therethrough, and through which the gauge parts will be received. The modules further can include replaceable inserts that can be received within the passage or channel formed within the module body, the replaceable inserts further including slots or recesses adapted to receive and guide the gauge parts during movement of the gauge parts through/along the passage of the module block. Alternatively, the inserts could be integrated with the modules, such as by being bonded or otherwise substantially permanently affixed or secured to the bodies of their modules or gauge blocks, and in some embodiments, can be substantially affixed while still enabling at least serviceable removal thereof if needed.
In embodiments, the replaceable inserts will be formed from hardened materials that can include, without limitation, various metal carbides, metals, ceramics and/or synthetic materials, while the body of the module can be manufactured from lighter weight materials such as aluminum and/or other metals, as well as various composites or synthetic materials. The inserts further can include openings or slots configured to receive guide pins or other locating devices, as well as one or more fasteners, for securing the inserts in the gauge modules. The openings further generally will be configured to enable adjustment of the inserts in at least one direction, e.g., longitudinally, and/or in multiple directions e.g., longitudinally and/or laterally, for adjusting a position of the inserts, and thus the arrangement or positioning of the gauge parts across and/or along their gauge modules. The inserts further can be interchangeable so as to enable easy removal of the inserts, and thus the replacement of one or more of the gauge parts received therein, for example to replace a worn or broken gauge part, or for changing a spacing between the gauge parts.
As a further alternative, in some embodiments, the modules or gauge blocks themselves can be removed and can be replaceable with other gauge blocks or modules, each including a set or series of gauge parts mounted therein, such as to provide for a change out of gauge spacing between gauge parts, a change out of the type of size gauge parts being used, or for a replacement of substantially all or at least a large portion of worn or broken gauge parts as a unit. In addition, the guide slots or recesses formed within the inserts generally will be configured to receive the bodies of the gauge parts with a clearance that is generally sufficient to enable substantially free sliding movement of the gauge parts therethrough, but without enabling undue shifting or twisting of the gauge parts so as to create a misalignment of the bills or throats of the gauge parts with their respective needles. The slots or recesses of the inserts further can terminate at a rear end or portion that can be configured or adapted to enable the edges of the bodies of the gauge parts to be seated against and/or provided with a base or engagement area along which they can slide so as to help maintain a desired alignment of the gauge parts as they are reciprocated or moved through their modules.
The gauge parts additionally can be arranged so as to engage the needles, including being arranged in a substantially in-line, offset or staggered, and/or other configurations as needed to engage in-line, staggered and/or dual needle bar arrangements. In embodiments, each of the gauge parts further can be arranged at an angle with respect to the needles as the needles penetrate the backing. For example, in some embodiments, the gauge parts can be arranged and/or be extensible/retractable along a path of travel oriented at an angle that can range from approximately 1° to approximately 10° from the vertical with respect to the needles and/or the stroke or vertical motion thereof, while in other arrangements, no offset, i.e., a 0° angle, can be provided. The offset of the gauge parts with respect to the needles further can be varied so that the gauge parts can be extended and retracted along an angled or offset path of travel with respect to the needles as needed to minimize potential engagement with the needles as the gauge parts are moved, depending upon the spacing and/or arrangement of the needles.
In various embodiments, the drive system will include a series of selectively controllable actuators driving movement of the gauge parts, which actuators can comprise electric cylinders, hydraulic or pneumatic cylinders, solenoids, motors such as stepper motors, servo motors or other motors, linear actuators, moving coil or voice coil actuators, as well as other, similar actuators, and/or combinations thereof. The actuators associated with or corresponding to each of the gauge parts further can be selectively controlled in accordance with pattern instructions so as to cause the gauge parts to be moved to a desired vertical position with respect to associated needles for pickup of loops of yarns from the needles, including picking up loops of yarns at different points of the needles' stroke so as to form loops/tufts of different pile heights, as well as being retracted to a “no-sew” position wherein a loop of yarn of a selected type or color generally will not be picked up by such gauge parts.
For example, the actuators can be connected to associated or corresponding ones of the gauge parts by connector assemblies for selectively driving movement of such gauge parts in a second direction with respect to the needles as the gauge parts are reciprocated in their first direction toward and away from engagement with the needles. The control system further can include programming to selectively engage each actuator to control the movement of the gauge parts for forming tufts of yarns in accordance with the pattern being run by the tufting machine, including moving the gauge parts to form or not form tufts, and/or for formation of tufts of varying pile heights.
In further embodiments, the actuators can be controlled/triggered to move their gauge parts with a loop of yarn captured thereon so as to elongate or pull such captured loop(s) to provide other pile heights and/or for other effects, such as for tip shearing or other pattern or textured effects. For example, the gauge parts can engage and pick-up loops of yarns from selected needles, and thereafter can be moved, e.g. retracted, to a lowered position, with the feeding of the yarns for such loops also being controlled, so as to draw or pull the loops to a lowered or extended length position to create varying pile height effects. The movement of the gauge parts to a raised or extended position with loops of yarns captured thereon also can be controlled by the control system, with the yarn feed for such loops of yarns further being controlled to pull back such yarns to maintain tension therein and/or to form various pattern pile height effects.
In another aspect of the tufting machine and method of forming patterned tufted articles, the gauge parts can be configured to move or pivot between raised, operative positions, including a fully raised, first operative position, and a lowered, no-sew position, with a distal end or tip of the gauge parts generally being oriented and/or arranged below a penetration depth or stroke of the needles, typically below the pick-up points or take-off areas of the needles, and potentially below the tips of the needles. The gauge parts can comprise loopers, hooks, level cut loop loopers, or other gauge parts, with a body pivotally mounted to a support or holder, and with a throat projecting forwardly from the body and terminating at the generally pointed tip or distal end. The actuators corresponding to such gauge parts can be selectively engaged or operated so as to cause the body of their corresponding or associated gauge part to be pivoted for moving the throats and distal ends of the gauge parts to a desired lowered elevation with respect to the needles.
In various aspects, the gauge parts are coupled to their respective or corresponding actuators of the drive system by connector assemblies including connectors or gates configured to extend between an actuator shaft or rod and the distal end of an associated or corresponding gauge part. In some embodiments, the connectors or gates can include an arm or linkage having a first end portion configured to engage or connect to the drive rod of its actuator, an intermediate section projecting from the first end portion, and a second end portion that generally will be configured to engage the distal end of an associated gauge part. In embodiments, the linkage or arm of each of the connectors or gates further can be received within a housing or support structure. In one example embodiment, such a housing or support structure can include a body formed from a durable, lightweight material, such as a carbon filled nylon material or other, similar composite or plastic material selected to provide durability and support for the linkage or arm while enabling a reduction in weight. Other materials including various metals, synthetic and/or composite materials also can be used. The configurations of the gates and the housings thereof further can be varied as needed.
As each actuator is activated or deactivated, it extends or retracts an actuator shaft to cause the connector or gate coupled thereto move its associated or corresponding gauge part in a desired direction with respect to the needles. For example, in some embodiments, the actuators can drive the gauge parts in a substantially vertical direction with respect to a directional reciprocation of the needles into and out of the backing, such as for adjusting a height of the gauge parts with respect to the needles as the gauge parts are reciprocated toward and away from the needles. In other embodiments, the actuation of the actuators and movement of the connectors can help control movement of the gauge parts, or portions thereof, such controlling movement of clips of level cut loop loopers, toward and away from the needles in a direction substantially along the direction of reciprocation of the gauge parts toward and away from the needles.
In still other aspects, the gauge parts are coupled to associated or corresponding actuators of the drive system by connector assemblies that each include a gate or connector comprising a body having a first end along which the first portion of the body of a corresponding gauge part is received, and a second end. In some configurations, a series of biasing members can be located between the second end of each gate and a spring plate. One or more linkages, which can include arms, rods, cables, or other, similar members, can extend between the actuators and the connectors or gates; and in some embodiments, can be coupled to the gauge parts.
Each linkage generally can have a first end portion extending through the spring plate and adapted to connect to the second end of its corresponding gate, or to a gauge part, and a second end portion coupled to a corresponding or associated actuator. In embodiments, the linkages will extend along a path from the actuators to their corresponding or associated gauge parts/gates. In some embodiments, the linkages further can extend through guides. In such embodiments, the guides can be configured to adjust the pulling force applied by the actuators.
Upon actuation, each selected actuator moves the linkage connected thereto, for example, by pulling or retracting the linkage so as to cause the gate and/or the corresponding gauge part to be moved in its second direction toward a retracted position and against the biasing force of one or more of the biasing members, generally compressing the biasing members as the gauge part is moved toward its retracted position. Upon deactivation of the actuator, the linkage can be released such that the one or more biasing members can decompress and/or bias or urge the corresponding gauge part toward its fully extended position. In embodiments, the biasing members can assist in control of the movement of the gauge parts in their second direction with respect to the needles to enable a substantially incremental movement and location of the gauge parts at varying positions of elevations. Such positional variations can be used to create or vary the lengths of the loops of yarns picked-up by the gauge parts and thus enable variations on pile heights of the tufts of yarns formed in the backing, as well as movement to a no-sew position where the gauge parts are moved to a position where they will not engage the yarns being carried by the needles.
In other embodiments, the connector assemblies can include linkages coupled to the body of one of the gauge parts and to a corresponding or associated actuator. For example, the actuators can comprise motors and the linkages comprise cables, rods, arms of combinations thereof. In embodiments, the motors also can include drive members, which, in embodiments, can include an eccentric, cam, or a pulley or similar drive member configured to translate a rotary motion to linear motion. As the drive member is rotated by its actuator, the linkage is caused to be extended or retracted, which in turn drives the motion of the corresponding or associated gauge part in the second direction between its extended and retracted positions, including moving the gauge part to a no-sew position.
In some embodiments, the connector assemblies can include linkages comprising a first arm or rod having a first end coupled to a drive member, such as an eccentric or pulley, coupled to and drive by an associated one of the actuators, and a second end coupled to a second arm or rod at a first end thereof. The second arm can have a second end pivotally connected to the first portion of the body of its corresponding gauge part. As each drive member is rotated by its motor, the first arm is extended and retracted along a first axis of movement, causing the second arm to pivot and move the corresponding gauge part along a second axis of movement between its extended and retracted positions.
In still further embodiments, each connector assembly can include a linkage that can comprise or can be connected to an extension piece connected to or integrated with the body of a corresponding gauge part. The opposite end of the linkage can be coupled to an actuator, for example, being coupled to drive member (e.g. an eccentric or pulley) driven by a motor. As the motor rotates its drive member, the linkage can be extended or retracted to move the corresponding or associated gauge part between its extended and retracted positions.
In some aspects of the present disclosure, a tufting machine is provided, comprising at least one needle bar having needles mounted therealong; backing feed rolls feeding a backing material; at least one yarn feed mechanism; at least one yarn feed mechanism feeding yarns to the needles; a gauge part assembly positioned below the backing material and having a plurality of gauge parts moveable in a first direction toward and away from the needles as the needles are reciprocated into and out of the backing, and in a second direction; and a control system including programming for controlling the at least one yarn feed mechanism to control feeding of the yarns to the needles in coordination with control or actuation of one or more actuators linked to the gauge parts so as to cause retraction or extension of selected ones of the gauge parts so that the throats of the selected ones of gauge parts are moved between a fully retracted no-sew position and a fully extended position with respect to the stroke of the needles into the backing material, for engaging the needles and forming tufts of yarns in the backing material according to a pattern being formed.
In some embodiments, the gauge part assembly can comprise at least one module carrying a series of gauge parts in a reciprocating motion in a direction toward and away from engagement with the needles as the needles are reciprocated into the backing material; wherein the at least one module comprises a module body that can be machined, cast, molded or otherwise formed from a metal, polymer, composite or synthetic material, or combinations thereof, and will have a first hardness. The module body will be adapted to mount along a gauge bar and will be configured with a passage defined therethrough. Inserts will be mounted to the module body on opposite sides of the passage, each insert having a series of spaced slots formed therein, the slots each configured to slidably receive at least a portion of one of the gauge parts therein. In embodiments, the inserts can be machined, cast, molded or otherwise formed from a metal or metal carbide or powdered metal material having a second or additional hardness greater than the first hardness of module body, and with the slots formed or defined therein.
In some embodiments, the modules can include a module body and one or more inserts.
In embodiments, the gauge parts can each include a body at least partially received within opposed slots of the inserts and moveable through the passage of the module body in an additional direction with respect to a stroke of said needles, the body of each gauge part having a first portion extending through the passage of the at least one module and a second portion having a throat configured to pick-up loops of yarns from the needles.
In embodiments, a series of actuators are coupled to said gauge parts for controlling movement of the gauge parts though the module body; and a control system including programming for controlling the at least one yarn feed mechanism to control feeding of the yarns to the needles in coordination with control of the actuation of one or more of said actuators so as to extend or retract selected ones of the gauge parts such that said throats of the selected ones of gauge parts are moved between a no-sew position and an engaging position with respect to the stroke of said needles into the backing material for selectively forming tufts of yarns in the backing material according to a pattern being formed.
In various embodiments of tufting machine, the gauge parts comprise level cut loop loopers, loop pile loopers, cut pile hooks, or cut/loop clips, and/or combinations thereof. In still further embodiments, of the tufting machine the actuators can comprise hydraulic or pneumatic cylinders, solenoids, motors such as stepper motors, servo motors or other motors, linear actuators, moving coil or voice coil actuators, as well as other, similar actuators, and/or combinations thereof.
In still other embodiments of the tufting machine the gauge part assembly further can comprise a series of connectors extending between each gauge part and an associated actuator, each of the connectors including a linkage received within and movable through a housing. In some embodiments, the housing of each connector will comprise a body that can be formed from a polymer, composite or synthetic material or combination thereof and having a channel extending therethrough; and wherein each linkage comprises a metal or composite material or combinations thereof.
In other embodiments, the body of each housing can comprise a composite material including a polymer or plastic with a fibrous fill material, and has a channel defined therein and along which the linkage is moveable; and wherein the linkage of each connector can comprise a hardened metal body or arm, or a series of arms, extending along a passage defined through the body of the housing, with a proximal end configured to engage the first portion of one of the gauge parts, and a distal end configured to be engaged by the actuator associated with the gauge part for translating movement by the actuator to the gauge part.
In addition, in embodiments, the inserts of the modules generally will be configured to overlap an upper surface of the module body and each include a slotted opening adapted to receive a fastener therethrough for adjustably mounting each of the first and second inserts to the module body with the inserts arranged at a selected spacing from each other and at a selected location with respect to the passage defined through the module body. In addition, the inserts can be molded or encased, encapsulated, or otherwise substantially integrated within the module body. The inserts also can include tabs or flange portions that can engage opposite side surfaces of the module body; and a plate or intermediate section can be provided therebetween. The intermediate section can connect the tabs or flanges of the inserts, with the slots of the inserts at least partially formed therein and extending therealong. Alternatively, a bearing plate of support can be received along the first and second side surfaces of the passage, between the tabs or flanges of the inserts.
Thus, in some aspects of the present disclosure, a gauge part assembly for a tufting machine, comprising at least one module having a module body with a passage defined therethrough; and a series of gauge parts received within the passage of the module body, each gauge part including a body with a first portion and a second portion having a throat, wherein the gauge parts are carried with their modules in a first direction toward and away from engagement with associated needles of the tufting machine to pick up loops of yarns from the needles along the throats of the gauge parts, and wherein the gauge parts are selectively movable in a second direction along the passage of the module body; wherein the first and second inserts are arranged along opposite sides of the passage of the module body, each insert formed from material having a hardness that can be greater than a hardness of the metal or composite material of the module body and having a series of spaced slots configured to receive at least a portion of one of the gauge parts therealong; wherein the slots of the first and second inserts are substantially aligned across the passage; and a plurality of actuators each actuator coupled to the first portion of an associated gauge part of the series of the gauge parts and adapted to move their associated gauge parts in the second direction through the passage of the at least one module, whereby the gauge parts are extended or retracted through the module body so as to move the throats of the gauge parts between extended positions for engaging and picking loops of yarns from the needles and a retracted position to substantially avoid picking loops of yarns from the needles.
In still other embodiments, the gauge part assembly can include first and second inserts that each comprise a body machined, molded or cast from a metal, carbide or powdered metal material and including a tab or flange portion in which the slots are formed. Still further, the body of each of the first and second inserts further comprises upper and lower tab or flange portions engaging upper and lower surfaces of the module body, with the slots extending through the upper and lower tab or flange portions.
In some aspects of the present disclosure, a method of operating a tufting machine is disclosed, wherein, according to one example embodiment of the present disclosure, as the needles of the tufting machine are reciprocated into and out of the backing, the gauge parts will be reciprocated in a first direction toward engagement with the needles. In addition, the actuators of at least selected ones of the gauge parts can be selectively engaged or disengaged so as to move their corresponding gauge parts between a fully retracted or no-sew position at which gauge parts will not engage an associated or corresponding needle, and thus no loop of yarn will be formed thereby, and varying extended or raised positions, including a fully extended position. In their raised or extended positions, the gauge parts engage the needles at the take-off portions thereof, as the needles pass into and out of the backing material, to pick-up loops of yarns from the needles.
In addition, in embodiments, as the needles are reciprocated out of the backing, the yarn feed therefor also can be controlled so as to cause non-selected yarns, e.g. yarns that are not engaged or picked-up by associated ones of the gauge parts when such associated gauge parts are in a lowered, no-sew position, so as to be generally retained with their needles and be retracted, withdrawn, or otherwise pulled back or out of the backing material with their needles. In other instances, the gauge parts can be moved to elevated or raised positions prior to or while engaging loops of yarns, and the yarn feed can be controlled to retract, back-rob or pull back some loops of yarns to an extent sufficient to prevent such yarn from being shown at that stitch location in the finished patterned article. The loops of yarns picked up from the needles also can have varying pile heights or lengths depending upon the position and/or movement of the gauge parts with respect to their associated or corresponding needles. For example, in a fully raised position, a smaller or decreased length loop of yarn can be formed by control of the yarn feed for such yarn(s) for controlling a pile height thereof, e.g. for creating a lower pile height, or even substantially hidden loops of yarns in the backing, including such loops being substantially removed (e.g. such as by being maintained/retained with their needles and not picked-up by the gauge parts in a lowered, no-sew position) by control of the yarn feed thereof.
In embodiments, longer loops of yarns can be picked up and formed by loopers as the loopers are moved to lowered positions, pulling the loops of yarns therewith, as needed, so as to create higher or greater pile height tufts of yarns in the backing. In addition, the actuators further can be controlled to selectively cause their corresponding gauge parts to be lowered or retracted with a loop of yarn captured thereon, to form still longer loops of yarns to enable additional patterning effects, such as for tip shearing and the like.
The needles further generally can be shifted laterally with respect to the longitudinal movement of the backing through the tufting zone in order to present different color or different type yarns to each stitch location of the pattern being formed in the backing material. For example, the needles of the needle bar or bars can be threaded with a series of desired colors in various thread-up sequences. In addition, the backing material typically can be run at an actual or effective stitch rate that is substantially greater than the prescribed or desired pattern stitch rate for the pattern being formed. As a result, as the needles are shifted, a desired number of different color or type yarns can be presented to each stitch location. By control of the positioning and/or movement of the gauge parts, loops of yarns can be selectively formed in the backing material, and with the formation of such loops of yarns further being controllable for forming varying pile heights of the resultant tufts in some embodiments. For example, in various aspects, a series of different color or type yarns can be presented to each stitch location as the needle bars are shifted, and if a tuft of a particular color or type yarn is not selected to be sewn at that stitch location, the corresponding gauge part can be held in a retracted or lowered position such that the loop of such a non-selected yarn generally will not be formed.
Still further, in embodiments, the feeding of the backing material will be controlled. For example, in embodiments, the backing feed can be controlled in conjunction with the shifting of the needles, the control of the yarn feed and control of the positioning of the gauge parts, such that the backing feed can be fed at a higher operative, effective or actual stitch rate to enable formation of a substantially increased number of presentations of yarns into the backing material to provide substantially full gauge coverage of tufts of selected colors of types of yarns remaining in the face of the tufted article and substantially avoid a missing color or type of yarn or gap being created, shown or otherwise appearing in the pattern fields of the patterned tufted article. The finished patterned tufted article thus can be provided with a density of tufts per inch that substantially matches a desired or prescribed pattern stitch rate, i.e., for patterns designed with a pattern stitch rate of 8, 10 or 12, or other numbers of stitches per inch, the resultant finished patterned tufted article can be formed a density of visible and/or retained face yarns or tufts per inch that can approximately match the pattern stitch rate.
The foregoing and other advantages and aspects of the embodiments of the present disclosure will become apparent and more readily appreciated from the following detailed description and the claims, taken in conjunction with the accompanying drawings. Moreover, it is to be understood that both the foregoing summary of the disclosure and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the present disclosure.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of this disclosure, and together with the detailed description, serve to explain the principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than may be necessary for a fundamental understanding of the exemplary embodiments discussed herein and the various ways in which they may be practiced. Those skilled in the art further will appreciate and understand that, according to common practice, the various features of the drawings discussed below are not necessarily drawn to scale, and that the dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the present disclosure described herein.
Referring now to the drawings in which like numerals indicate like parts throughout the several views,
As generally illustrated in
An encoder or similar sensor additionally can be provided for monitoring the rotation of the main drive shaft and reporting the position of the main drive shaft to a control system 25 (
The control system 25 generally will include programming enabling the monitoring and control of the operative elements of the tufting machine 10, such as the needle bar drive mechanism 13, yarn feed attachments 27, backing feed rolls 28, the main drive shaft 18, a needle bar shift mechanism 40 (
In some embodiments, the system controller 26 of the control system 25 generally can be programmed with instructions for forming one or more desired patterns for one or more tufted articles, including a series of pattern steps, which steps can be created or calculated manually or through the use of design centers or design software as understood by those skilled in the art or can receive such patterns via input from a disk, USB or other external drive, or through a network connection. Alternatively, the controller 26 can include image recognition software to enable scanned and/or designed pattern images, such as designed patterns, including pile heights and other characteristics such as placement of loop pile and cut pile tufts in the pattern shown by, for example, different colors or similar markers or indicators, as well as photographs, drawings and other images, can be input, programmed, recognized and processed by the control system, including receiving inputs from a design center or through various design software systems, or via a scanner or other imaging device 31 (
Additionally, in embodiments such as where the control system 25 can operate in conjunction with or also can comprise or include a stitch distribution control system, as disclosed in U.S. Pat. No. 8,359,989 (incorporated by reference as if set forth fully herein). For example, and without limitation, the control system can incorporate programming to provide for the functionality of such a stitch distribution control system, or a separate stitch distribution control can be linked thereto. The control system also can be provided with software/programming to enable reading and recognition of colors of an input scanned pattern, and can assign supply positions for the yarns being supplied from a supply creel to various ones of the needles based on the thread-up sequence of the needles of the needle bar so as to optimize the supplies of the various color yarns in the creel for the best use thereof, to form recognized pattern fields from pattern images. The control system further can include programming enabling it to create pattern fields or mapping of the pattern, including mapping a series of pattern pixels or tuft/stitch placement locations identifying the spaces or locations at which the various color yarns and/or cut/loop pile tufts will be selectively placed to form the imaged pattern. A desired pattern density, i.e., a desired number of stitches per inch to appear on the face of the finished patterned tufted article, also can be selected and an actual effective or operative process stitch rate for the pattern calculated to achieve the appearance of the desired fabric stitch rate of the pattern.
The control system 25 of the present disclosure further can include programming to receive, determine and/or execute various shift or cam profiles, or can calculate a proposed shift profile based on a scanned, an input, or other designed pattern image or pattern file. For example, in one non-limiting embodiment, a designed pattern file image, photograph, drawing, etc., can be loaded, scanned, or otherwise input at the tufting machine or by a network connection, and the control system can read, recognize and calculate the pattern steps/parameters, including control of yarn feed, control of backing movement and/or needle reciprocation to form tufts in the backing at an effective stitch rate to achieve a desired pattern density, a cam/shift profile, and arrangement of yarns to match the scanned and/or designed pattern image, and can thereafter control the operation of the tufting machine to form this selected pattern. An operator additionally can select or modify stitch rates, yarn feeds, a selected cam profile or a calculated shift profile, such as by indicating whether the pattern is to have 2, 3, 4, 5, 6 or more colors, or a desired number of pattern repeats, and/or can manually calculate, input and/or adjust or change the creel assignments, shift profiles and/or a color mapping created by the control system as needed via a manual override control/programming.
As indicated in
Each of the needles generally will include a shank or body 38 terminating at a pointed end 38A, and including a take-off point or area 39 where the gauge parts 32 can engage and pick-up yarns Y from the needles, such as indicated in
As further illustrated in
There are a variety of yarn feed attachments that can be utilized with the stitch distribution control system of the present disclosure for controlling the feeding of the different yarns Y to various ones of the needles 36. The pattern yarn feed attachments or mechanisms 27 (
In some embodiments, pattern yarn feed attachments can be used which have multiple yarn feed drives 45, as indicated in
The yarn feed attachment can be controlled to selectively feed the yarns to their respective needles in cooperation with the other operative systems of the tufting machine, including the backing feed, shifting of the needle bars and the operation of the gauge part assembly 30, to enable control of the presentation of a number of different colors or types of yarns into the packing and the selective pick-up and retention of loops of selected or desired ones of the presented yarns (e.g., yarns selected to appear in the face of the finished patterned article) to form tufts of such yarns with selected or desired pile heights. In addition, the surface or face yarns or tufts that are to appear on the face of the tufted article can be controlled so as to be fed in amounts sufficient to form such tufts of the selected color or type yarns at desired or prescribed pile heights, while the non-appearing yarns that are to be hidden in particular color and/or texture fields of the pattern may not be picked-up by the gauge parts to avoid such yarns interfering with the face yarns or retained tufts that are to be visible in the pattern field, and to avoid creating an undesired space or gap between the retained tufts or face yarns.
In an embodiment, each color or type yarn that can be placed/tufted at each pixel or stitch location generally either can be presented to such pixel or stitch location for tufting, with only the yarn(s) selected to be shown or appearing at the pixel or stitch location being retained and formed at a desired pile height. Thus, for a 4 color pattern, for example, each of the 4 color yarns A, B, C and D that can be tufted at a particular pixel or location can be presented to such pixel with only the selected yarn or yarns of the pattern, e.g., the “A” yarn, being retained, while the remaining, non-selected yarns, B, B-C, B-D. and/or other combinations, can be presented and not picked-up by gauge parts that are in a lowered, no-sew position, so as to generally avoid forming loops of such yarns at such pixels or stitch locations, with the yarn feed therefor being controlled to withdraw such yarns with their needles. In some cases, if loops of yarns are picked-up, they further can be pulled back to an extent sufficient to tack or hold the yarns with the backing but without interfering with the placement of the retained yarns as such a pixel or stitch location. Accordingly, when a yarn is presented to a pixel or stitch location, if the yarn is to be retained or appear in the pixel or stitch location, the yarn feed 27 can be controlled to feed an amount of yarn so as to form a tuft of yarn at the pixel or stitch location. If no yarns are selected for insertion at a particular pixel or stitch location, the gauge parts can be controlled to be moved to a no-sew position where by they will not pick-up loops of yarns presented to particular pixels.
As further shown in
As indicated in
As generally illustrated in
For example, and not limitation, as indicated in
As further indicated in
In addition, one or more inserts 85 can be mounted to the opposite side surfaces, e.g. the upper and lower surfaces, of each module body, in positions or locations aligned along the passage 80 defined through the whole body of each gauge module, as generally indicated in
Each of the inserts 85 generally will be formed from a hardened metal or metal alloy material, a metal carbide, ceramics, and/or powdered metal materials including metal powders including tungsten, titanium, or other materials that can have a hardness that is greater than a hardness of the material of the gauge module body. For example, in some embodiments, the inserts can be formed from a metal carbide material having a hardness of approximately 74+RC or greater, while the module body can be formed from a mild steel. In other embodiments, the inserts can be formed from ceramics, powdered metal materials including tungsten, titanium or similar hard metal components, metal carbides, or other materials with a hardness of between approximately 74+RC to approximately 85+RC, or greater.
Each of the inserts 85 further each can include an insert body 86 having a tab or flange portion 87 that extends either forwardly or rearwardly, from the passage of the gauge module body, generally seating upon and engaging the upper and lower surfaces 83/82 of the module body. Each of the inserts 85 also will include at least one opening or slot 89 formed along the tab or flange portion thereof, and through which a fastener, such as a set screw 90, or other, similar removable fastener, can be received. The slots or openings 89 formed in the tabs or flange portions inserts generally can be aligned with a corresponding slot or locator opening 91 formed along the upper and/or lower surfaces 83/82 of the module body to help locate and mount each insert to the body of its module and along the passage of its gauge module. The inserts can be shifted laterally, across the module body and substantially parallel to the passage 80, and further can be adjustable toward and away from each other across the passage of the gauge module body, after which fasteners can be inserted therein and tightened to secure the inserts 85 to their module body. Additional locator guide pins 92 further can be received in slots or locator openings formed along flange or tab portions 87 of each of the inserts to additionally help position the inserts along and across the passage of the module body as needed.
In additional embodiments, the inserts 85 can be substantially integrated with their modules. The inserts can be bonded, molded, encapsulated, and/or otherwise affixed to the bodies of their modules, with the inserts being substantially integrated with the module bodies so as to form a substantially unitary construction of the module bodies, and with the inserts forming or defining a portion of the passages thereof. For example, in some cases, the inserts can be located or received within the passages of the module bodies and substantially permanently mounted thereto, while in other embodiments, the inserts can be machined, molded or cast as a part of the module bodies themselves, defining the passage and slots for the loopers or hooks, and can be coated or treated with a hard metal coating such as a carbide or other substantially wear resistant coating. In such instances, the gauge parts can be provided in sets with their gauge modules, and can be replaced as a set by removal and replacement or substitution of the gauge modules and gauge parts as a unit. In other embodiments, the inserts can be substantially engaged or locked to their modules with a limited ability to detach or remove one or more of the inserts as needed for serviceability.
As additionally indicated in
In some embodiments, the ends 96 of the slots 95 further can be formed with a substantially so as to define a seat or bearing surface against which the first and second edges of each of the loopers or hooks received in each slot can be located, and can bear against, for mounting of the loopers or hooks within the inserts and thereafter securing the inserts, with the loopers or hooks received therein to each gauge module. The slots of the inserts will guide the loopers or hooks as the loopers or hooks are extended or retracted or otherwise moved through the passage of their gauge module, and will help maintain the alignment of the loopers or hooks, and thus the throats and bills thereof with respect to the needles such as needles are reciprocated into and out of the backing material and are engaged by the loopers or hooks.
In embodiments, the inserts each can include an insert body 86 having a first, top or upper portion and a second, lower or bottom portion, and with an intermediate section extending therebetween and connecting the first and second portions of the body of each insert. At least one of the upper and/or lower portions of the body of each insert further can be formed as a tab or flange that extends either forwardly or rearwardly, from the intermediate section and the passage of the gauge module body, generally overlying and engaging the upper and lower surfaces 83/82 of the module body to help locate and fix each insert within the passage of its gauge module. The first and second inserts 85A/85B thus can have a substantially unitary construction, including upper and lower portions with their slots extending through their upper and lower sections and along the intermediate body sections, enabling further engagement and guiding of at least a portion of the first and second edges of the loopers or hooks. In embodiments, the inserts can be machined, molded or cast so as to have a substantially unitary body, which can enable a reduction of parts, reducing the need for separate inserts on the upper and lower surfaces of the module body and along opposite sides of the passage thereof, while increasing the points/area of contact between the inserts and the loopers or hooks for enhanced consistency and/or control of the movement.
Alternatively, first, second and intermediate body sections of each insert can be formed as separate components and mounted together along the passage of the module body. For example, in some embodiments, an intermediate guide or bearing plate also can be used to help guide movement of the loopers or hooks, with the guide or bearing plate extending along the passage between inserts located along the upper and lower surfaces of the module body. Such a guide or bearing plate can provide a body or surface along which the first and second or front and rear edges of the loopers or hooks can ride/slide as they are moved along the passage of the module body. The guide or bearing plate also can act as a connecting member or section between the inserts or each pair or set of inserts. Such a guide or bearing plate can be formed from a similar high hardness material (e.g. a metal or carbide, powdered metal or other high hardness material, or a material that has been hardened or coated or bonded with a material having an increased wear resistance or which can comprise a reduced material) to provide a hardened surface against which one or both of the edges of the loopers or hooks can slide; or, in some cases, can act as a sacrificial plate that can be easily replaceable and protects the module body along the sides of the passage.
During operation of a tufting machine such as disclosed in embodiments of the present disclosure, the loopers, hooks, or other gauge parts are moved in multiple directions, including being reciprocated or moved in a first direction into and out of engagement with the needles, while also being moved in a second direction through their gauge modules or gauge blocks, e.g. being moved between raised or extended positions to engage the needles and lowered, positions, including being moved to no-sew positions. In some operations, the gauge parts also can be moved after a loop of yarn has been picked from a needle, such as to form extended or longer length loops. This tufting machine thus enables the formation of highly detailed tufted patterns that can include varying pile heights and other sculptured and multi-color pattern effects. However, such repeated cyclical movements of the gauge parts can cause significant rapid wearing of the gauge parts and particularly their gauge modules as the loopers, hooks or other gauge parts slide and their edges frictionally engage the bodies of their modules. As these parts wear, their ability to engage their needles and form loops of yarns to create tufted patterns with a substantially high degree of precision can be diminished. For example, the gauge parts can become misaligned, and/or may not engage the needles properly or with the desired level of precision, requiring more frequent replacement of the gauge parts/gauge modules.
The use of metals (such as high hardness heat treated steels), metal carbides, ceramics, and/or other high hardness metal materials, including powdered metals including tungsten, titanium or other, similar high hardness materials, which provides the inserts with a hardness of at least 75+RC or greater, and the configuration of the inserts defining contact areas 98 between the loopers or hooks and the gauge modules with a minimized area or profile, substantially increases the wear life to the gauge modules and the loopers or hooks. The high hardness of the inserts protects the gauge modules from direct contact with and rapid wearing as the loopers or hooks are cycled therethrough, while the reduced size of the contact areas 98 defined by the inserts are configured to reduce frictional engagement of the inserts with the loopers or hooks, while substantially consistently guiding and maintaining the alignment of the loopers or hooks during such movement. The loopers or hooks also generally can be pre-hardened or heat treated so as to harden the looper or hook bodies; and in some embodiments, the surfaces of the looper or hook bodies can be coated, treated or bonded with a reduced friction material to help reduce friction between their edges 55A/55B that engage and slide along the slots of the inserts, and thus help increase wear life thereof. Other coatings that can be applied can comprise materials with increased wear resistance to help protect the loopers or hooks against wearing during use. For example, in some applications, the wear life of the loopers or hooks has been found to exceed upwards of 50 million to 100 million machine cycles, and in some embodiments, between at least about 100 million to 500 million cycles or greater.
The increased hardness of the inserts protects the gauge modules and enables the gauge modules to be formed from substantially lighter weight and lower hardness materials such as mild steels, aluminum, or alloys thereof. For example, instead of requiring the gauge modules to be formed from substantially high hardness materials such as tungsten, and/or be substantially heat treated to try to significantly increase the hardness thereof, the gauge modules can be machined, molded, or cast, or otherwise formed from lightweight metals, composites or other, similar materials with hardness's that can be substantially lower than that of the inserts (e.g. the bodies of the gauge modules can be formed from mild steels or aluminum alloys with a hardness less than about 60 RC) which helps reduce weight and cost of the overall gauge part assembly without reducing operational cycle performance. Such a reduction in weight of the gauge modules or blocks further can provide enhanced control of the movement of the loopers through the passage of their gauge modules, as well as the reciprocation of the loopers or hooks toward and away from the needles, e.g. by reducing inertia that may need to be overcome during the reciprocation of the loopers or hooks toward and away from the needles.
In one embodiment, as generally illustrated in
Each of the actuators generally will be linked to the control system 25, which will selectively control the actuation thereof so as to control the firing and/or movement of each of the loopers with respect to the needles. The actuators will be controlled to selectively extend and retract their loopers or hooks so that the position of their throats/bills can be varied in a second direction with respect to the reciprocation of the needles into and out of the backing material, and with respect to the movement of the loop loopers or hooks 50 in the direction of arrows 54/54′. For example, in embodiments, the loopers or hooks will be moved in a substantially vertical (i.e., a generally up and down) movement with respect to the needles, as illustrated by arrows 71 and 71′ in
For example, in a fully extended position, selected ones of the loopers or hooks 50 can pick up loops of yarns from the needles engaged thereby, which loops generally can be formed with a first selected or desired pile height, whereas other ones of the loopers or hooks can be extended or retracted to positions or locations between fully extended and retracted positions so as to pick up and form loops of yarns with second or other, differing lengths or pile heights. Some of the loopers or hooks also can be moved to a fully lowered or retracted position by their actuators so as to place them in a no-sew position whereby the throats/bills of such loopers or hooks are located below a full penetration depth or end of stroke of the needles and thus will not pick up loops of yarns from their corresponding or respective needles. In other operations, the actuators can be selectively controlled or triggered to retract or lower their respective loopers or hooks after a loop of yarn has been captured thereon, so as to pull such captured loops of yarns lower, to elongate or create higher pile or increased length yarns for additional patterning effects, such as for tip shearing and/or other texturing effects.
As indicated in
For example, in some embodiments, the loopers or hooks can be arranged and/or moved along a path of travel at an angle/offset, indicated at θ in
As generally illustrated in
In some embodiments, the housing 101 of each of the connectors can be over-molded over its connector arm 102, or can be formed in sections and applied about the connector arm such that its connector arm is substantially enclosed or contained therein. The connector arm 102 further can be made from a metal such as steel or other, similar high strength material, selected to provide high strength and rigidity sufficient to enable each connector arm to withstand repeated shocks and increased movement cycles during operation of the tufting machine. For example, and without limitation, the connector arms 102 can comprise a hardened steel material, and in some cases, can further be heat treated or annealed, such as at the ends thereof, at areas of contact and/or engagement with the loopers or hooks, and between each connector arm and the drive shaft or rod 69 of its associated actuator or actuators 68 such as indicated in
In some embodiments, the connector arm 102 further can include a skeletonized metal body configured to enable a reduction of the weight thereof. In such embodiments, the housing 101 of each connector or gate can provide further support and rigidity to the connector arm 102, helping to guide and maintain a consistent reciprocating movement or motion thereof during operations. As a result, the connectors or gates 67 can provide a more economical connector or gate design, enabling linkages or connector arms having a skeletonized or reduced profile and lighter weight to be used with additional support and impact elasticity and dampening effects provided by the housing 101 of each connector or gate applied over and/or encasing or encapsulating the linkages or connector arms.
In various embodiments, each of the connectors or gates 67 can be formed with varying sizes and configurations. For example, the intermediate sections of each connector housing can have shorter or longer spans depending on a gauge, distance, length of travel or the length of the connector arm, and thus can be varied for different tufting machines and/or tufting applications. By way of example only, in embodiments, the connectors or gates can comprise varying configurations for use with different gauge tufting machines, such as ⅛th gauge or 1/10th gauge machines, though it will be understood that other gauges ( 5/16th, 1/16th, 1/12th, 1/14, etc. . . . ) and/or type machines also can be used. The intermediate section of the housing of each connector further can be oriented at an angle, in some cases being oriented at a downwardly extending angle, while in other cases, can be oriented at an upwardly extending angle, with adjacent connectors at opposite angle orientations or configurations to minimize space or the footprint taken up thereby.
The connector arm 102 of each connector or gate 67 further can be formed in varying lengths as needed or desired. Each linkage generally will have a first or proximal end 110, which can be adapted or configured to engage or connect to one or more actuator shafts or drives rod of an associated actuator or actuators, with a generally angled body section or portion 111 that extends along the passage or channel 107 of the housing, through the housing of the connector, and terminating at a distal, flanged or hooked end 112. The body portion 111 of each linkage further will be located and/or aligned within the passage of its housing and enclosed therewithin to help provide stability and/or to help guide movement of the linkage along the channel of its connector housing.
For example, in some instances, pins or other inserts can be used during formation of the housings about or over their linkages to align and support the linkages in position, which pins can be removed thereafter. Alternatively, some guide pins can be provided to help maintain and guide movement along one or more portions of the connector arm, including or acting as bearings. Still further, in some other embodiments, a slot also can be provided along the body of each housing, through which a guide pin can be received to help guide movement of the linkage and can further help provide further impact elasticity.
In additional embodiments, a guide pin or fastener can be inserted through the housing and along a slot or guideway, or similar means for helping guide and control or maintain the movement of the linkage along the passage or channel of its connector housing without twisting or turning or otherwise becoming misaligned. In still other embodiments, a pivot pin can be provided about which the connector arm can be moved or pivoted rather than being moved in a substantially linear movement.
As further indicated in
In addition, the control system 25 (
The control system 25 further will include programming enabling the one or more yarn feed attachments 27 to be controlled in conjunction or correlation with the position of the loopers or hooks. For example, in embodiments, such as where single or double/multiple end yarn feed mechanisms (e.g. an Infinity™ yarn feed as produced by Card-Monroe Corp.) are used, the motors 46 of each of the yarn feed drives 45 thereof can be controlled in cooperation with the control of the actuators 151 controlling the positioning of the loopers or hooks so as to minimize or prevent yarn tension in the yarns captured by such loopers or hooks from substantially varying across the width of the pattern. In some embodiments, the control system can control the motors to control movement of the loopers or hooks in their second direction with respect to the needles 36, which movement can be based on multiple or percentage of an amount of yarn being feed by the yarn feed mechanism; e.g. if a selected yarn feed motor is controlled by the control system to feed approximately ½ inch yarn to a selected needle, the actuator corresponding to a looper or hook engaging such a selected needle can be moved approximately ¼ on an inch. In other embodiments or examples, if the yarn feed motor feeds ¼ inch yarn, the corresponding loopers or hooks can be moved approximately ⅛th inch. Other multiples or variations of the movement of the loopers or hooks in conjunction with or in relation to the feeding of the yarns to selected needles also can be used as needed to substantially maintain yarn tension and substantially minimize or prevent variation thereof across the pattern width of the tufted pattern being formed.
In
As illustrated in
As further indicated in
The motors 152 further can be controlled by the system controller to maintain a desired tension in the linkages, as may be needed to counter the biasing force exerted by the biasing members and control of the movement and/or positioning of the gauge parts with respect to the needles. Still further, the motors can be controlled by the control system in conjunction with control of the yarn feed to additionally cause movement of the gauge parts between raised and lowered positions with a captured a loop of yarn thereon, so as to further enable variations in the pile heights of tufts of yarns formed thereby. Additionally, the biasing force applied by the biasing members can be used to help control the movement of the gauge parts in their second direction, e.g. can help control the movement of the gauge parts between lowered and raised position by the motors 152.
In some embodiments, the linkages can include substantially rigid rods, wires, arms, or other, similar connecting members, and the motors can be controlled to move the linkages in opposite directions to control movement of the gauge parts along a path in the second direction as they are reciprocated toward and away from the needles in the first direction. In such an embodiment, the biasing members may or may not be used.
In addition, in the embodiment shown in
In operation of the drive system 150; as shown in
Thereafter, the motors can be reversed or disengaged from the linkages so as to allow biasing force exerted by the biasing members against the gates to cause the clips connected thereto to return to an extended position, moving along the body of their level cut loop looper, and into a position to block the capture of loops of yarns by the level cut loop looper such that any loops of yarns picked up thereby will be released to form loop pile tufts. The biasing force applied by the biasing members further can be used in conjunction with the operation of the motors or other actuators to help control the movement of the gauge parts in their second direction, e.g. can help control the movement of each of the gauge parts between various lowered and raised positions in smaller and/or more defined increments or distances.
In addition, the control system for the tufting machine will include programming for controlling the yarn feed to each of the needles in conjunction with the operation of the level cut loop loopers and their clips so as to control a length of loops of yarns picked-up or captured by the gauge parts to form various pattern effects such as discussed further below.
The linkages 188 can include cables, rods, wires, belts or other, similar connectors, and, in embodiments, will extend through the spring plate and each will connect to the distal end 183B of one of the gates or connectors 183 at a first end 188A, and can connect to a corresponding actuator 151, such as one or more motors 152 (e.g., servo motors, stepper motors, torque motors, moving coil actuators, linear actuators, electric cylinders, etc.) at a second end 188B. The linkages further can be extended through one or more guides 189 as needed to help control movement and/or tension in the linkages. As indicated in
Upon disengagement of the linkages, or reversing of the actuators (e.g., reversing of motors or release of the linkages thereby), the biasing force exerted by the biasing members as they are decompressed will cause these gates to be urged forwardly in the direction of arrow 191′, which in turn can cause the gauge parts to pivoted in a reverse direction, as indicated by arrow 71, causing the first or proximal ends thereof to be raised toward an extended or elevated position for engaging the needles and picking loops of yarn or a loop of yarns therefrom. The control system can control the actuators to provide a counter to the biasing force from the biasing members to control the movement and/or positioning of the gauge parts to an extended position. The actuators further can be controlled by the control system in conjunction with control of the yarn feed to additionally cause the movement of the first or proximal ends of the gauge parts between the raised and lowered positions with a captured a loop of yarn thereon, so as to further enable variations in the pile heights of tufts of yarns formed thereby.
In embodiments, the drive members 202 can include eccentrics, pulleys, or disks, or other rotatable drive members. The drive members can be driven by the actuators in a rotary movement; and, as the drive members are rotated, the linkages coupled thereto will be extended or retracted, such that the gauge parts will be moved in a substantially linear motion, in their second direction. The throats of the gauge parts thus will be moved between extended or raised positions and retracted, lowered positions, including being moved to a fully lowered, no-sew position wherein the throats of the gauge parts generally will not engage in pick up loops of yarns from the needles. As the drive members are further rotated by the actuators, either in a reverse direction or toward a generally complete rotation, the gauge parts can be returned to desired elevations or positions with respect to the needles.
Connector assemblies 215 connect the gauge parts to corresponding or associated ones of the actuators, with the connector assemblies including linkages 216. In the present embodiment, the linkages, are illustrated as including rods, arms, bars or sections. Other types of linkages also can be used. As indicated in
In operation, according to some embodiments, tufted articles can be formed according to the system and method of the present disclosure, which tufted articles can be formed with various patterns and pattern effects, including the use of multiple different color and/or type yarns for forming such patterns, as well as including sculptured or multiple pile height effects. For example, the system and method of the present disclosure can be operated in conjunction with a stitch distribution control system or yarn color placement system such as disclosed and illustrated in U.S. Pat. Nos. 8,141,505, 8,359,989 and 8,776,703, the disclosures of which are incorporated by reference as if set forth fully herein.
In such embodiments, the stitches or tufts of yarns being formed in the backing material further can be formed at an increased or higher actual operative or effective process stitch rate as compared to the fabric or pattern stitch rate that is desired or prescribed for the tufted pattern being formed. If the pattern or fabric stitch rate or density of a pattern being formed calls for the tufted article to have an appearance of 8, 10, 12, etc., stitches per inch formed therein, and/or which are to be shown on its face, the actual, operative or effective number of stitches per inch formed during operation of the tufting machine will be substantially greater than the desired or prescribed pattern or fabric stitch rate. Thus, the actual formation of stitches or tufts of yarns in the backing material will be accomplished at an increased actual, operative or effective process stitch rate, whereby effectively, a greater number of stitches per inch than will be required to be shown in the finished pattern will be formed in the backing material, with those stitches or face yarns that are not desired to be shown or remaining in the face of the pattern field or area being sewn not being picked-up by gauge parts, and in some cases, being pulled back and out of the backing material or to an extent to enable such yarns to be held or tacked in the backing while substantially avoiding creation of undesired or unnecessary gaps or spaces between the retained or face yarns of the pattern (i.e., the tufts of yarns that are to remain visible or appear in the finished pattern of the tufted article).
For purposes of illustration, in one example embodiment, the effective process stitch rate can be based upon or determined by increasing the fabric or pattern stitch rate of the pattern being formed approximately by a number of colors selected or being tufted in the pattern. For a pattern having a desired fabric or pattern stitch rate of about 10-12 stitches per inch, and which uses between 2-4 colors, the effective or operative process stitch rate (i.e., the rate at which stitches are actually formed in the backing material) can be approximately 18-20 stitches per inch up to approximately 40 or more stitches per inch. However, it further will be understood by those skilled in the art that additional variations of or adjustments to such an operative or effective process stitch rate run for a particular pattern can be made, depending upon yarn types and/or sizes and/or other factors. For example, if thicker, larger size or heavier yarns are used, the effective process stitch rate may be subject to additional variations as needed to account for the use of such larger yarns (e.g., for 4 color patterns, the effective process stitch rate can further vary, such as being run at about 25-38 stitches per inch, though further variations can be used as needed). Thus, where a selected or programmed pattern being run may be designed or desired to have ten to twelve stitches per inch as a desired pattern density or stitch rate therefor, the system may actually operate to form upwards of twenty to forty-eight or more stitches per inch, depending on the number of colors and/or types of yarns, even though visually, from the face of the finished tufted article, only the desired/selected ten to twelve stitches generally will appear.
Additionally, where a series of different colors are being tufted, the needles 36 of the needle bar 35 generally will be provided with a desired thread up, for example, for a four-color pattern an A, B, C, D thread up can be used for the needles. Alternatively, where 2 needle bars are used, the needles of each needle bar can be provided with alternating thread up sequences, i.e., an A/C thread up on the front needle bar, with the rear needle bar threaded with a B/D color thread up. In addition, the needles of such front and rear needle bars can be arranged in a staggered or offset alignment. The needle bar or needle bars further generally will be shifted by control of the needle bar shifter 40 (
For example, for a four color pattern, each of the one-four colors that can be sewn at a next pixel or stitch location, i.e., one, two, three, four, or no yarns can be presented at a selected pixel or stitch location, will be presented to a desired looper or hook as the backing material is moved incrementally approximately ⅛th- 1/40th of an inch per each shift motion or cam movement cycle. The loopers or hooks will engage and form loops of yarns, with a desired yarn or yarns being retained for forming a selected tuft, while the remaining yarns generally can remain with their needles without being picked-up by a looper or hook. Some yarns can be picked up as needed and the yarn feed mechanism(s) therefor can be controlled, including pulling these non-retained yarns pulled out of the backing material so as to float along the backing material. Accordingly, each looper or hook is given the ability to tuft any one, or potentially more than one (i.e., 2, 3, 4, 5, 6, etc.) of the colors of the pattern, or possibly none of the colors presented to it, for each pattern pixel or tuft/stitch location associated therewith during each shift sequence and corresponding incremental movement of the backing material. As noted, if none of the different type or color yarns is to be tufted or placed at a particular tuft or stitch location or pixel, the yarn feed can be controlled to limit or otherwise control the yarns of the needles that could be presented at such stitch location or pixel to substantially pull back all of the yarns or otherwise prevent such yarns from being placed or appearing at that stitch location, and/or the needle bar additionally could be controlled so as to jump or otherwise bypass or skip presentation of the needles/yarns to that stitch location or pixel.
The feeding of the backing material B further can be controlled, i.e., by the stitch distribution control system in a variety of ways. For example, the tufting machine backing rolls 28 can be controlled to hold the backing material in place for a determined number of stitches or cycles of the needle bar, or can move the backing material at a desired number of stitches per inch, i.e., move about 1/40th of an inch for each penetration, or variations thereof so as to move about 1/10th of an inch as four stitches are introduced in the backing for a pattern with four colors and an effective stitch rate of 40 stitches per inch. The movement of the backing material further can be varied or manipulated on a stitch-by-stitch or pixel basis with the average movement of all the stitches over a cycle substantially matching the calculated incremental movement of the operative or effective process stitch rate. For example, for a 4-color cycle, a first stitch can be run at 1/80th of an inch, the next two at 1/40th of an inch, and the fourth at 1/20th of an inch, with the average movement of the backing over the entire 4-stitch cycle averaging 1/40th of an inch for each stitch presented, as needed, to achieve a desired stitch/color placement.
Each different yarn/color yarn that can be tufted at a particular stitch location or pixel thus can be presented to such stitch locations or pixels as the pattern is formed in the backing material. To accomplish such presentation of yarns at each pixel or stitch location, the needle bar(s) generally can be shifted as needed/desired per the calculated or selected cam profile or shift profile of the pattern to be run/formed, for example, using a combination of single and/or double jumps or shifts, based on the number of colors being run in the pattern and the area of the pattern field being formed by each specific color. Such a combination of single and double shift jumps or steps can be utilized to avoid over-tufting or engaging previously sewn tufts as the needle bar is shifted transversely and the backing material is advanced at its effective or operative stitch rate. The backing also can be shifted by backing or jute shifters, etc., either in conjunction with or separately from the needle bar shifting mechanism.
As the needles penetrate the backing B, as indicated in
As indicated in
The type/color of yarn of each series of yarns being presented at each pixel or stitch location that is to be retained or shown on the face of the backing at a particular stitch location generally will be determined according to the pattern instructions or programming for the formation of the tufted pattern. Controlling the activation and/or positioning of the loopers or hooks 50 corresponding to or associated with the needles carrying such yarns can enable the tufting machine to selectively pick-up and retain a loop of that yarn at each stitch location at which such yarns are to remain in accordance with the pattern, so as to form a resultant tuft of such a yarn at a selected pile height. For example, if the presented yarn is not to be shown or appear, the corresponding looper or hook can be retracted to a no-sew position so that a loop of yarn is not picked-up, and the yarn feed therefor controlled so that such a yarn is not retained at the pixel or stitch location. For the retained yarns/colors, i.e., the yarns appearing on the face of the patterned tufted article, the positions or elevations of the loopers or hooks and the yarn feed mechanisms feeding these yarns generally can be cooperatively controlled so as to enable pick-up and formation of loops of such yarns sufficient to form tufts of a desired type and pile height.
The further control of the backing feed at an increased effective or operative process stitch rate (e.g., the actual rate at which stitches are formed in the backing) in accordance with the principles of the present disclosure further provides for a denser or compressed field of stitches or tufts per inch, so that the yarns that are not picked-up can be removed at least to an extent sufficient to tack or hold such yarns against the backing as needed, without creation of undesired spaces or gaps between the retained face yarns (those appearing on the face of the tufted article according to the pattern) and interfering with or showing through such retained face yarns formed in the backing material. Additionally, the control system can perform yarn feed compensation and/or modeling of the yarn feed to help control and reduce the amount of non-retained or non-appearing yarns that may be “floating” on the back side of the backing material to further help reduce/minimize excess yarn feed and/or waste.
In addition, the yarn feed mechanisms controlling the feeding of each of the yarns to each of the needles can be selectively controlled to pull the yarns carried by the needles substantially out of the backing material or with the reciprocation of the needles; and can retract or pull back/low some loops of yarns to a position substantially low enough to generally avoid such non-selected ends of yarns occupying a selected stitch location, or otherwise interfering with the placement of a selected face yarn or yarn to be shown in a particular color field being formed according to the pattern.
For example, in some embodiments, when selected or particular loopers or hooks are retracted to a fully retracted position or “no sew” position, no loop generally will be picked up from the needles associated with such fully retracted loopers or hooks, while the yarn feed is correspondingly controlled so that the yarns are allowed to move with their needles into and back out of the backing material. In addition, in some instances where loops of yarns are formed, such as when the loopers or hooks are at a fully extended position and form low loops, the resultant formed loops of yarns further can be back-robbed or pulled substantially low or out of the backing material by control of the yarn feed thereof to an extent so as to leave an amount of yarn engaged with or “tacked” to the backing, while substantially removing such yarns to an extent so that such non-selected ends of yarns generally will not interfere with the placement of a face appearing or selected yarn at a particular stitch location within the color field being sewn.
The placement of the non-appearing yarns being tacked or otherwise secured to the backing material also can be controlled to prevent the formation of such extended length tails that can later become caught or cause other defects in the finished tufted article. For example, the control system also can be programmed/set to tack or form low stitches of such non-appearing yarns at desired intervals, e.g., every 1 inch to 1.5 inches, although greater or lesser intervals also can be used. Yarn compensation also generally can be used to help ensure that a sufficient amount of yarns is fed when needed to enable the non-appearing yarns to be tacked into the backing material, while preventing the yarns from showing or bubbling up through another color, i.e., with the yarns being tacked into and projecting through one of the stitch yarns with several yarns being placed together. Additionally, where extended lengths or tails would be formed for multiple non-appearing yarns, the intervals at which such different yarns are tacked within the backing material can be varied (i.e., one at 1″, another at 1.5″, etc.) so as to avoid such tacked yarns interfering with one another and/or the yarns of the color field being formed.
Still further, the actuators, such as the actuators 66 of
The selective control of the actuators for selectively retracting and extending their loopers or hooks further can be used to provide additional variation or transitioning steps or pile heights within a pattern. For example, the gauge parts can be moved incrementally with respect to the needles by control of their actuators alone or in relation to the biasing force applied by the biasing members to buffer and/or enable control of the movement of the gauge parts in smaller increments as needed to provide more gradual or subtle differences or changes in pile heights, or for providing more dramatic or defined separations between pile heights of the tufts of yarns being formed.
Accordingly, across the width of the tufting machine, the control system will control the shifting and feeding of the yarns of each color or desired pattern texture effect so that each color that can or may be sewn at a particular tuft location or pattern pixel will be presented within that pattern pixel space or tuft location for sewing, but only the selected yarn tufts for a particular color or pattern texture effect will remain in that tuft/stitch location or pattern pixel. As further noted, it is also possible to present additional or more colors to each of the loopers or hooks during a tufting step in order to form mixed color tufts or to provide a tweed effect as desired, wherein two or more stitches or yarn will be placed at desire pattern pixel or tuft location. The results of the operation of the stitch distribution control system accordingly provide a multi-color visual effect of pattern color or texture effects that are selectively placed in order to get the desired density and pattern appearance for the finished tufted article. This further enables the creation of a wider variety of geometric, free flowing and other pattern effects by control of the placement of the tufts or yarns at selected pattern pixels or tuft locations.
The system and method for tufting sculptured and multiple pile height patterns articles of the present disclosure thus can enable an operator to develop and run a variety of tufted patterns having a variety of looks, textures, etc., at the tufting machine without necessarily having to utilize a design center to draw out and create the pattern. Instead, with the present disclosure, in addition to and/or as an alternative to manually preparing patterns or using a design center, the operator can scan an image (i.e., a photograph, drawing, jpeg, etc.) or upload a designed pattern file at the tufting machine and the stitch distribution control system can read the image and develop the program steps or parameters to thereafter control the tufting machine substantially without further operator input or control necessarily required to form the desired tufted patterned article.
The foregoing description generally illustrates and describes various embodiments of the present disclosure. It will, however, be understood by those skilled in the art that various changes and modifications can be made to the above-discussed construction of the present disclosure without departing from the spirit and scope of the present disclosure as disclosed herein, and that it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as being illustrative, and not to be taken in a limiting sense. Furthermore, the scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of the present disclosure. Accordingly, various features and characteristics of the present disclosure as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiments of the present disclosure, and numerous variations, modifications, and additions further can be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.
The present application claims benefit of co-pending U.S. patent application Ser. No. 17/843,011, filed Jun. 17, 2022 and claims benefit of U.S. Provisional Patent Application No. 63/212,770, filed Jun. 21, 2021.
Number | Date | Country | |
---|---|---|---|
63212770 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17843011 | Jun 2022 | US |
Child | 18747518 | US |