The present invention relates to the control of tug boat engines and in particular to reducing emission levels of tug boat engines to comply with USEPA emission standards under 40 CFR Part 94 regulations which became effective in January 2004.
USEPA emission standards under 40 CFR Part 94 became effective in January 2007 for category 2, engine displacement between five and fifteen liters cylinder. The standards include:
Nitrogen oxides (Nox)+Total Hydrocarbon: (THC)=7.8 grams/kw-hr
Carbon Monoxide (CO)=5 gms/kw-hr; and
Particulate matter (PM)=0.27 gms/kw-hr.
The above standards are also known as Tier 2 standards.
Tug boats commonly use an Electro Motive Division (EMD) 645 series engine. The 645 series engines are a family of eight, twelve, sixteen and twenty cylinder 45 degree Vee two stroke diesel engines used as locomotives, marine, and stationary engines. Each engine includes the same bore and stroke producing 645 cubic inches per cylinder, and include a roots blower or a turbocharger. The 645 series engines have been replaced by 710 series engines, but are still in use, for example, in the tug boats.
Two stroke diesel engines include exhaust valves in the head(s) and intake ports low in the cylinder walls which are covered by the pistons during most of an engine cycle and briefly uncovered to allow air to enter the cylinder. The exhaust valves are opened by a cam(s) when the piston nears Bottom Dead Center (BDC) at the end of the power stroke and close after the intake ports are uncovered by the piston, resulting in both the exhaust valves being open and the intake ports uncovered at the same time. The two stroke diesels require a supercharger to force air through the intake ports and into the engine because there is no vacuum to draw air into the cylinder. The piston again covers the intake ports shortly after beginning the compression stroke. Fuel is injected into the engine near Top Dead Center (TDC) and is ignited by heat in the cylinder at the beginning of the power stroke. Such diesel engines would be less efficient than gasoline engines, except for the fact that because the diesel fuel is not in the cylinder during the compression stroke, a higher compression is useable with a diesel engine than a gasoline engine, and the thermal efficiency of the engine increases with compression ratio.
Various methods have been exercised to reduce the emissions of tug boats using the EMD 645 series engines. Unfortunately, while known methods address some of the Tier 2 standards, the known methods have failed to address all of the standards.
Various aspects of the present invention address the above and other needs by providing a tug boat diesel engine emissions control suite including modified fuel injectors with a built in injection timing retard feature and diesel fuel heating. Tug boats are now required to comply with USEPA emission standards under 40 CFR Part 94 regulations. Retarding the fuel injection timing reduces peak temperatures during combustion which in turn reduces production of Nitrogen Oxides (NOx) but also increases emissions of particulate matter (PM), Carbon Monoxide (CO), and Hydrocarbons (HC) in the exhaust. Heating the diesel fuel provides a reduction in PM, CO, and HC to acceptable levels. Experiments showed that a novel modification to a plunger in the fuel injectors providing up to six degrees of fuel injection timing retarding, and fuel heated to 120 to 140 degrees Fahrenheit, resulted in meeting the 40 CFR Part 94 regulations.
In accordance with one aspect of the invention, there is provided an emissions control suite which includes a simple and effective modification to existing fuel injectors to retard fuel injection timing. Retarding the fuel injection timing reduces peak temperatures during combustion which in turn reduces production of Nitrogen oxides (NOx). The fuel injection timing is retarded by using a modified fuel injector plunger which retards the fuel injection timing as the quantity of fuel injected is increased, thereby reducing NOx. In a preferred embodiment, the fuel injection timing retarding varies between two and six degrees depending on the load on the engine.
In accordance with another aspect of the invention, there is provided an emissions control suite which heats the diesel fuel to reduce PM, CO, and HC to acceptable levels. Retarding the fuel injection timing reduces NOx but unfortunately increases emissions of Particulate Matter (PM), Carbon Monoxide (CO), and Hydrocarbons (HC) in the exhaust. Unrelated efforts by the present inventors to reduce the smoke in diesel exhaust by pre-heating the diesel fuel showed an unexpected reduction in PM, CO, and HC. Such heating of the diesel fuel is expected to increase combustion temperature and thus NOx, but unexpectedly, a substantial increase in fuel temperature, from 70 degrees Fahrenheit to as much as 140 degrees Fahrenheit did not overcome the reduction in NOx provided by the retarded fuel injection timing, but did reduce PM, CO, and HC emissions to satisfy 40 CFR Part 1042 and Part 94 regulations. Further experiments showed that an unexpected synergistic combination of fuel injection retarding and fuel heated to approximately 140 degrees Fahrenheit resulted in meeting the 40 CFR Part 1042 and Part 94 regulations. The temperature of the heated diesel fuel must be carefully controlled to not exceed approximately 140 degrees Fahrenheit which is approaching the flash point of the diesel fuel.
In accordance with yet another aspect of the invention, there is provided an emissions control suite which reduces emissions in diesel engines by increasing a compression ratio from a typical compression ratio between 14.5 to 1 and 16 to 1, to a compression ratio of 17.4 to 1 or higher. The higher compression ratio significantly reduces emissions of Particulate Matter (PM) but results in some increase in NOx emissions.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is of an embodiment presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing one or more preferred embodiments of the invention, and other embodiments derived by those skilled in the art are intended to come within the scope of the present invention. The scope of the invention should be determined with reference to the claims.
Reduction of engine emissions have proven to be very difficult due to the complex nature of combustion in engines. Methods have generally consisted of trial and error and lack accurate models capable of predicting results. Further, emissions reduction is generally a non-linear multi-dimensional problem including the interaction of fuel control, air intake control, engine bore and stroke, combustion chamber design, operating temperatures, and other design and operation parameters. The overall environment of engine emissions control thus presents a complex problem with few obvious solutions when a single parameter is varied, and virtually no obvious solution when multiple interacting parameters are varied.
A functional block diagram of an emissions control suite 10 according to the present invention is shown in
The fuel injector timing is retarded to delay the injection of diesel fuel to reduce peak combustion temperature. NOx is created when nitric oxide (NO) reacts with oxygen (O2) to create nitrogen dioxide (NO2). The lower peak combustion temperature reduces the chemical reaction reducing the production of NOx. Unfortunately, retarding the fuel injection timing also increased the emissions of particulate matter (PM), Carbon Monoxide (CO), and Hydrocarbons (HC).
There were no obvious methods for reducing the increased PM, CO, and HC in the diesel engine exhaust which resulted from retarding the fuel injection timing. However, an independent effort was underway to reduce diesel engine smoke. One approach to smoke reduction which was tried was to heat the diesel fuel to provide more complete combustion. The engine exhaust was being monitored as part of the test, and an unexpected reduction in PM, CO, and HC was observed. Once this reduction was identified, additional experiments were performed with varying fuel injection retarding and fuel heating. Test results eventually showed that retarded fuel injection timing coupled with heating the fuel to between 120 and 140 degrees Fahrenheit, and preferably near the 140 degrees Fahrenheit flash point of the diesel fuel, provided consistently good results meeting the 40 CFR Part 94 regulations.
A diesel engine 34 including the emissions control suite 10 according to the present invention is shown in
A diagram of a preferred heat diesel fuel element 14 of the emissions control suite 10 is shown in
The flow control valve 58 is preferably a powered 3-way thermostatic valve which includes internal temperature regulating features to control the combining the heated fuel flow 50b with the bypass flow 60 to control the temperature of the heated fuel flow 26′. An example of a suitable flow control valve 58 is a AMOT self powered 3-way Thermostatic Valve with a target temperature designed into the valve.
A diagram of a second fuel heating element 40a of the emissions control suite according to the present invention is shown in
An example of suitable fuel injection timing is shown in a fuel injection timing chart according to the present invention in
A cross-sectional view of a preferred diesel fuel injector 70 including self-adjusting fuel injection timing is shown in
The plunger 80 acts as a high pressure fuel pump to overcome the pressure in the combustion chamber. The amount and timing of the fuel injected into the engine is determined by the overlap of the feed ports 84a and 84b with the plunger porting 88. The plunger porting 88 is shaped so that the plunger may be rotated to vary both the timing and amount of fuel injected. Specifically, the plunger 80 only pumps fuel into the engine when neither feed ports 84a and 84b overlaps the plunger porting 88. While feed ports 84a or 84b overlaps the plunger porting 88, as the plunger 80 is depressed downward, the fuel under the plunger 80 merely escapes back through the plunger 80 into the fuel manifold 28 (see
Rotation of the plunger 80 is controlled by a rack 75 cooperating with teeth 90 on the plunger 80. The teeth 90 extend vertically to allow continued engagement of the rack 75 with the teeth 90 when the plunger 80 is depressed by the cam 71 and rocker arm 73. The rack 75 connects all of the injectors 70 and controls the engine load jointly across all the injectors 70.
The cooperation of the plunger porting 88 with feed ports 84a and 84b with zero fuel flow into the engine is shown in
The cooperation of the plunger porting 88 with feed ports 84a and 84b with idle fuel flow into the engine is shown in
The cooperation of the plunger porting 88 with feed ports 84a and 84b with a half load fuel flow into the engine is shown in
The cooperation of the plunger porting 88 with feed ports 84a and 84b with a full load fuel flow into the engine is shown in
One example of a plunger port shape is shown in
The amount of fuel injection timing retard and fuel heating disclosed above is based on results obtained for a limited variety of diesel engines. Other diesel engines include different types and methods of forced induction which often affect the temperature of air entering the engine and other engine parameters. As a result, variations to the amount of fuel injection timing retard and fuel heating disclosed here for the 645 series engines, to obtain similar reductions in emissions in other diesel engines, are intended to come within the scope of the present invention.
While the emissions control suite 10 provides a valuable reduction in emissions without additional modifications, tests have shown that some additional engine modification combined with the emissions control suite 10 are generally necessary to achieve Tier II emissions compliance. Increasing a compression ratio from a typical compression ratio between 14.5 to 1 and 16 to 1, to a compression ratio of 17.4 to 1 or higher, for example, by using high compression pistons, has been shown to significantly reduces emissions of PM. The higher compression ratio results in some increase in NOx emissions, but the fuel injection timing retard has shown to be sufficient to keep the NOx emissions within requirements. The use of low oil consumption cast iron or stainless steel ring sets on 17.4 to 1 compression pistons has further shown reduce oil consumption. An example of low oil consumption rings are pre-stress hardened rings. Additionally, plateau honing the liners (thereby increasing the bearing area of the liner while maintaining oil retention) and plating the pistons with a tin coating have shown potential advantages.
While the present invention is of particular value to tug boasts which are the target of USEPA emission standards under 40 CFR Part 94, the present invention has general application to any similar diesel engine, and any diesel engine modified according to the present invention to reduce emissions is intended to come within the scope of the present invention, and in particular, any marine vessel diesel engine modified according to the present invention to reduce emissions is intended to come within the scope of the present invention.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
The present application is a Continuation In Part of U.S. patent application Ser. No. 12/759,890 filed Apr. 14, 2010, which application is incorporated in its entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12759890 | Apr 2010 | US |
Child | 12840254 | US |