The invention relates to a tugboat having azimuthal propelling units.
Within the framework of the present invention, by the expression “azimuthal propelling unit” is meant a propelling unit whose propelling direction in horizontal direction can be varied through 360°. Such azimuthal propelling units are already known per se, for instance in the form of a nozzle having a propeller arranged therein.
Specific requirements are imposed on a tugboat with regard to thrust and maneuverability. For instance, it is desired that a tugboat cannot only produce hauling power in forward direction, but also in rearward direction, and even in lateral direction, although the hauling power producible in lateral direction will be less than the hauling power producible in longitudinal direction.
For instance from the article “Schottel tugs” in Small Ships, Vol. 99, No. 1204, December 1976, page 95, it is already known to fit a tugboat with azimuthal propelling units because of the maneuverability provided thereby. Such tugboats, also known by the name of “tractor tug”, have two azimuthal propelling units which are juxtaposed in transverse direction and, viewed in the longitudinal direction of the tugboat, in a central position. However, some drawbacks are attached to this. For instance, it is not properly possible to continue using the tugboat if one of the propelling units has been damaged.
From WO1997020730 a tug boat is known having three azimuthal propelling units. Two azimuthal propelling units are provided at a first longitudinal position, on opposite sides of a mid sectional plane of the tugboat. A third azimuthal propelling unit is positioned at a longitudinal position different from the longitudinal positions of said two azimuthal propelling units. In this known tugboat, which is known in the field as Rotor tug®, each propelling unit has a propeller shaft and a main shaft. The propeller can be rotated around the main shaft over at least 360 degrees and the main shafts extend parallel to each other, in a vertical direction when the tug boat is level.
For tug boats, especially for use in harbors and waterways with draft limitations and/or harbors and waterways featuring tug pens with draft restrictions, it is important to provide sufficient towing force, for pulling and/or pushing assisted vessels. There is therefore a desire to alternative tug boats having optimal power and draft, while remaining agile and reliable.
Generally, the object of the invention is to provide a tugboat which, in respect of the above-mentioned aspects, performs better than the tugs known thus far.
An object of the invention is to provide a tugboat which can produce more power than the rotor tug type tugs known thus far, without the draft being increased. An object of the invention is to provide a tugboat which can produce similar power as the rotor tug type tugs known thus far, with the draft being decreased. In known tugs, an increase of the power producible can be realized by using two stronger propelling units, but a consequence thereof is that the dimensions of the propelling units are increased as well, which has an adverse effect on the draft of the ship.
In order to realize the above objectives, a tugboat according to the present invention may have three azimuthal propelling units viewed from the top, lie in a triangular pattern, wherein of at least the main axis of two such propelling units on opposite sides of a mid sectional plane of the tug boat extend at an angle relative to a vertical line when the tug boat is in a level position. Such angle preferably is formed by or includes an angle with the mid sectional plane of the tug boat. Such angle may be formed by or include an angle in a plane parallel to said mid sectional plane.
Thus, it is possible to produce a greater thrust which is distributed over the tugboat in a better manner and/or a similar thrust with a reduced draft. In comparison with the known rotor tugs for example the same thrust can be obtained with similar propelling units, but with a smaller draft, or an increased thrust can be obtained with the same draft using larger propelling units. Moreover in embodiments an improved towing behavior can be obtained by the improved arrangement of the thrusters in relation to the towing points.
These and other aspects, characteristics and advantages of the present invention will be specified by the following description of a preferred embodiment of a tugboat according to the invention, with reference to the accompanying drawings, wherein:
Viewed in the transverse direction, the tugboat 1 is substantially symmetric relative to a vertical main plane of symmetry 2 (II-II in
By reference numeral 5, a vertical plane is indicated in the figures which is perpendicular to the main plane of symmetry 2, and which intersects that main plane of symmetry 2 according to a vertical line precisely halfway the front and rear extreme points 3 and 4. That vertical line M will be referred to as the center of the tugboat 1, and the vertical plane 5 will be referred to as the transverse center plane of the tugboat 1. Herein below, horizontal width positions will be indicated as measured relative to the main plane of symmetry 2.
The body portion of the tugboat 1 located behind the transverse center plane 5 will be referred to as the stern 6 or stern side, and the body portion of the tugboat 1 located before the transverse center plane 5 will be referred to as the bow 7 or bow side.
By a reference sign L8, the horizontal position is indicated of a towing point 8 provided on the stern 6, i.e. a point intended for securing a towing cable or the like thereto, or for guiding, via that point, a towing cable or the like to a towing winch, or towing hook. The tugboat 1 can have several towing points; for instance, a towing point 8A can be provided on the bow 7 and a towing point 8B can be provided on the stern 6. If the tugboat 1 has several towing points on the bow 7 and/or stern 6, the towing point 8 is meant to be the last point of physical contact between towing line 100 and tugboat 1. Herein a contact point is to be understood as also including a line contact or relatively small area of contact. Similarly the length position of any towing point 8, 8A can be indicated by reference sign L with an indicator, such as 8 or 8A. Towing points 8, 8A can for example comprise a winch 101, such as but not limited to a render recovery winch, for winching a towing line 100. The tug boat can further be provided with a fendering system, for allowing pushing as well as pulling of a vessel to be assisted, or for operating in close proximity to other vessels and/or structures.
The tugboat 1 comprises three azimuthal propelling units 10, 20 and 30, whose propelling direction in horizontal direction can be varied through 360° relative to the respective main axis 11, 21, 31 associated with the propelling units 10, 20 and 30. Each propelling unit may be driven by a separate driving engine or different propelling units can be driven by the same motor, for example through appropriate gear boxes, or engine-driven generators in combination with electric-driven propelling units, not shown for simplicity's sake. Such azimuthal propelling units are known per se, for instance in the form of a screw, a nozzle having a propeller arranged therein, or a so-called Voith Schneider unit. An example of such propelling unit is shown in
As can for example be seen in
Viewed in horizontal direction, the three azimuthal propelling units 10, 20 and 30 can be arranged according to an isosceles triangle, the triangle being placed symmetrically relative to the main plane of symmetry 2. It is preferred that two azimuthal propelling units 10 and 20 be located on one side of the transverse center plane 5, and that the third azimuthal propelling unit 30 be located on the other side of the transverse center plane 5, seen in said longitudinal direction L of the boat 1.
In preferred embodiments illustrated, a first azimuthal propelling unit 10 and a second azimuthal propelling unit 20 may be located below the bow 7, symmetrically on both sides of the transverse center plane 5. By this it is meant that the length position L10 of the main shaft 14 of the first azimuthal propelling unit 10 is equal to the length position L20 of the main shaft 14 of the second azimuthal propelling unit 20. These positions are greater than 0.5 L, while the width position B10 of the main axis 14 of the first azimuthal propelling unit 10 is equal (but opposite) to the width position B20 of the main axis 14 of the second azimuthal propelling unit 20. As regards the length positions L10 and L20, they may be greater than 0.65 L and preferably greater than 0.7 L. In combination with geometry of hull 18 this further restricts available space, further limiting possible arrangements. If a towing point is provided on the bow 7, the length position thereof is preferably greater than or equal to L10 and L20. If a towing point is provided on the stern 6, the length position thereof is preferably greater than or equal to L30.
The main axis 14 of the third azimuthal propelling unit 30 preferably lies in the main plane of symmetry 2, and has a length position L30 smaller than 0.5, and may be greater than or equal to 0.15 L or less. L30 may be smaller than or equal to 0.4 L, for example smaller than or equal to 0.25. L30 may be greater than or equal to L8 or smaller than L8 for the towing point 8 at the stern.
The position and especially the length position L or B is defined by the position P in which the main shaft 14 of a propelling unit crosses the hull 18 or an imaginary plane of the hull 18 as a continuation of the hull 18 over the relevant thruster well 17 or opening in which the thruster well 17 is mounted in the hull 18. As will be discussed for at least one of the propelling units 10, 20, 30 in the present invention the main shaft 14 extends non-vertical, such that the lower end 14A of the main shaft is not directly below the said position P, contrary to the tug boat according to the prior art, in which the said lower end 14A of each of the main shafts 14 is indeed directly below said position P since the main shaft 14 of each propelling unit 10, 20, 30 extends vertically, said shafts 14 in the prior art hence extending parallel to each other and parallel to the main planes 2 and 5.
In the present invention for at least one and preferably at least two of the propeller units 10, 20, 30, the main shaft 14 or at least the axis 11, 21 and/or extends non vertical, such that it encloses an angle with a vertical line through the relevant point P. In
In embodiments each propelling unit 10, 20, 30 has a main direction of thrust Dt, preferably directed perpendicular to the main axis 11, 21, 31. The main direction of thrust Dt should be understood as meaning a center line extending from the center of the propeller 12 in a direction parallel to and preferably coinciding with an axis 12A of the propeller shaft 12. This line or main direction of thrust Dt extends as a center line of the substantially cone shaped wake W of water displaced by the relevant propeller. As can be seen in
As can be seen in a comparing of
As can be seen in
By inclination of the axis 11, 21 of the respective propelling units 10, 20 the position of the thruster well 17 of each of the propelling units 10, 20 will be tilted too, allowing a repositioning thereof slightly outward along the surface 18A of the hull 18 when compared to the same hull of the prior art, bringing the propellers 12 even further outward, increasing the distance Dprop even further. Moreover, design and construction of the thruster well 17 can be easier and more effective since the angle between the said surface area 18A and the relevant bottom side of the thruster well 17 is reduced.
In embodiments the inclination of the axis 11, 21 of the respective propelling units 10, 20 can have the advantage that they can be placed further from the plane 5 in the tug boat 1, for example closer to the stein or bow 7, at a length position L10+, L20+, increasing the distance between the center C of the boat and the respective propellers 12 compared to the prior art tug boat, as can be seen in a comparison between
As can be seen in the front views of
In
The three azimuthal propelling units 10, 20 and 30 can be mounted entirely below the bottom 9 of the tugboat 1. However, it is also possible that the azimuthal propelling units 10, 20 and 30 are partly recessed in the bottom 9 of the tugboat 1, so that the tugboat 1 will have a less great draft. This applies in particular to the third azimuthal propelling unit 30, located at the center of the tugboat 1, because, viewed in cross section, the bottom 9 of the tugboat 1 is generally more or less V-shaped, so that in fact, the lowermost point of the third azimuthal propelling unit 30 may determine the draft of the tugboat 1 if propellers of the same size are used. When such recesses 9A are used the inclination of the axis 11, 21, 31 may be further beneficial since the thrust of the propellers will be less influenced by the sides and edges of such recess, increasing the effective thrust that can be achieved for these units 10, 20, 30.
In conventional “tractor” tugboats, the propelling units are disposed at equal length positions. A consequence thereof is that when the boat is moved truly transversely to the longitudinal direction, and, moreover, a pulling or pushing force is to be exerted in that direction, a fairly large part of the installed power is lost: this loss can be about 50%, or higher depending on the arrangement and type of the propelling units installed. In conventional tugboats with the screws mounted at the rear of the boat, that loss may even be 70%. Owing to the presence of a third propelling unit 30 at a length position different from that of the other two propelling units, as known in the prior art, the maneuverability in lateral direction is improved, and the maximally producible pulling or pushing force transverse to the longitudinal direction is increased considerably. By repositioning of the main axis 11, 21 of the two propelling units which are side by side at a same side of the transverse plane 5, the thrust side ways can even further be increased since part of the thrust of a first of the two propelling units 10, 20 which seen in direction of thrust is in front of the second of the two propelling units 20, 10 will pass below said second propelling unit. Whereas that thrust, i.e. the water displaced by the propeller 12 of said second propelling unit will pass below the hull 18 to a greater extend than when the axis 11, 21 would be vertical, further increasing efficiency.
Since the third azimuthal propelling unit 30 is located in the main plane of symmetry 2, it is possible in an easy manner to travel straight on utilizing only one or two propelling units, viz. the third propelling unit 30 or propelling units 10 and 20. This possibility, which can for instance be used when the tugboat 1 travels in even keel or zero trimcondition, provides a saving of fuel and a reduced wear.
The three propelling units can jointly develop a thrust greater than the thrust that can be produced by two propelling units at an equal draft. It is even possible to realize a greater total thrust while the three propelling units are individually chosen to be smaller than the individual propelling units of the conventional tugboat, whereby the draft of the tugboat can be reduced as well.
It will be understood by anyone skilled in the art that changes and modifications of the embodiment described are possible, which fall within the framework of the present invention and within the protective scope of the claims. For instance, incorporation tug boat according to the present invention can be provided with another number of propelling units, for example two or four. It is also possible that one or several, for instance the third one, of the propelling units are retractably mounted, enabling a propelling unit that is not being used to be retracted to a position within the profile of the bottom of the boat. As a result, the resistance during travelling will be reduced, which means a saving of fuel.
The position of the propelling units can be reversed, i.e. one unit at the front and two units at the rear irrespective of the towing points 8 on bow 7 and stern 6.
Number | Date | Country | Kind |
---|---|---|---|
2017577 | Oct 2016 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2017/050656 | 10/5/2017 | WO | 00 |