This invention relates generally to systems and methods for processing waste and new product into new useful material, and more particularly to processing broken glass waste product into useful smooth glass pieces useful in, for example, lapidary construction, art, and functional interior and exterior decorating.
Currently, the benefits of recycling materials are well known. For example, many common household materials, such as paper, metals, and glass can be recycled for re-use. However, the cost of recycling varies depending upon the material, and for some materials, such as glass, the cost can be particularly high.
Glass recycling is costly because glass often is recycled for a generic use. As such, industries which use generic recycled glass typically require the glass to be largely contaminant free so as to be put to a variety of uses. Household waste recycling programs generally do not discriminate between glass and ceramic recyclables, or between glasses of different colors. As such, glass recyclables collected by recycling authorities tend to be 10 a mixture of different colors of glasses and ceramics, as well as contaminants such as foil or paper labels and any non-recyclable refuse that finds its way into a bottle or jar or other refuse in a recycling bin.
To reduce the costs of generic glass recycling, specific uses for recycled glass have been developed. For example, U.S. Pat. No. 6,284,186 to Hansen discloses using comminuted, recycled, glass powders as filler in molded plastic parts. The recycled glass powder used in Hansen has non-uniform, rounded edges and is free from contaminants, such as grinding compounds, metals, inorganic, and organic waste materials. Hansen discloses using the recycled glass powder filler with a variety of different thermoplastics and thermosetting plastics commonly used to in injection molding and blow molding of plastic parts.
One type of glass waste product is broken glass. In general, once a glass pane is broken, there is little use for the broken shards or the remainder of the broken glass pane. Broken tempered glass, such as window shields for automobiles, presents a particular recycle problem because the resultant glass comprises small, sharp, glass pieces that are fire resistant.
In view of the foregoing, there is a need for systems and method for recycling broken, normal tempered glass waste product into smooth glass pieces useful in, for example, lapidary construction, art, and functional interior and exterior decorating. The systems and methods should provide a high efficiency in creating the smoothed glass pieces, and should not require specially-formulated glass or non-standard tempering processes.
Broadly speaking, embodiments of the present invention address these needs by disclosing systems and methods for generating useful, smooth glass pieces from normal heat-treated glass. The resulting smooth glass pieces are useful in, for example, lapidary construction, art, and functional interior and exterior decorating. In one embodiment, a method for creating smoothed, heat-treated glass fragments is disclosed. The method includes placing a plurality of heat-treated glass fragments into a tumbling apparatus. Each heat-treated glass fragment is formed from glass that has been heated to a temperature of at least 1000° Fahrenheit and rapidly cooled to a temperature below 700° Fahrenheit. The plurality of glass fragments are then tumbled for a predetermined period of time such that surfaces of the heat-treated glass fragments are smoother than prior to tumbling. The glass fragments are thereafter removed from the tumbling apparatus, resulting in smoothed, heat-treated glass fragments suitable for direct handling. The heat-treated glass fragments can be formed from fully tempered or toughened glass. For example, the heat-treated glass fragments can be formed from tempered glass that has been heated to a temperature in the range of about 1,200° to 1,600° Fahrenheit and rapidly cooled to a temperature below 600° Fahrenheit. In this case, the tempered glass has a surface compression of at least 10,000 PSI. Alternatively, each glass fragment can be formed from a plate of toughened glass that has a surface compression of at least 3,500 pounds-force PSI. In either case, the glass typically is rapidly cooled by application of an air quench that extracts heat uniformly from both surfaces of the glass and leaves the center area of the heated glass hotter than the surfaces. To further customize polishing, an aqueous or non-aqueous process can be used. Aqueous additives can be placed into the tumbling apparatus along with the heat-treated glass fragments during an aqueous process. Similarly, when utilizing a non-aqueous process, non-aqueous additives can be placed into the tumbling apparatus along with the heat-treated glass fragments.
A further method for creating smoothed, heat-treated glass fragments is disclosed in an additional embodiment of the present invention. In this embodiment, a plurality of heat-treated glass fragments is placed into a vibratory apparatus. As above, each heat-treated glass fragment is formed from glass that has been heated to a temperature of at least 1000° Fahrenheit and rapidly cooled to a temperature below 700° Fahrenheit. The plurality of glass fragments are then agitated for a predetermined period of time such that surfaces of the heat-treated glass fragments are smoother than prior to vibrating. The glass fragments are thereafter removed from the vibratory apparatus, resulting in smoothed, heat-treated glass fragments suitable for direct handling. As above, an aqueous or non-aqueous process can be used. Aqueous additives can be placed into the vibratory apparatus along with the heat-treated glass fragments during an aqueous process, and non-aqueous additives can be placed into the vibratory apparatus when utilizing a non-aqueous process. In a further embodiment, smoothed, heat-treated glass fragments prepared by a process comprising placing a plurality of heat-treated glass fragments into a tumbling apparatus are disclosed. In this embodiment, the smoothed, heat-treated glass fragments are formed from glass that has been heated to a temperature of at least 1000° Fahrenheit and rapidly cooled to a temperature below 700° Fahrenheit. The glass fragments are then tumbled for a predetermined period of time such that surfaces of the heat-treated glass fragments are smoother than prior to tumbling, and then removed from the tumbling apparatus. As above, an aqueous compound can be placed into the tumbling apparatus along with the heat-treated glass fragments, as can aqueous additives. Similarly, during a non-aqueous process, non-aqueous additives can be placed into the tumbling apparatus along with the heat-treated glass fragments.
The smoothed, heat-treated glass fragments of the embodiments of the present invention are suitable for direct handling and can be utilized in various projects including art, decoration, facade, stone work, lapidary, construction, paving, laminates, decorative, functional and nonfunctional interior and exterior decorating. In addition, because the smoothed glass pieces have been heat-treated, they can be utilized in heat related building and art projects, such as fire pits and fireplaces. Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with further advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
An invention is disclosed for generating useful, smooth glass pieces from standard fully tempered glass or heat-strengthened glass, that are useful in, for example, fireplaces, fire pits, lapidary construction, art, and functional interior and exterior decorating. Embodiments of the present invention do not require specially-formulated glass or nonstandard tempering processes. The present invention methods provide a cost-effective means for in creating the smoothed glass pieces.
For the purposes of this specification, the terms polygonal shape is defined as a three (3) dimensional polygon having multiple edges of regular and irregular shapes, also known as a polygonal solid. The term irregular shapes consist of a three (3) dimensional solid that has curved edges, as well as a mixture of curved and polygonal edges.
In addition, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.
The standard tempered glass is generally called “soda-lime” has the following chemical composition by weight:
It is not uncommon for glass manufacturers to modify the percentage by weight to create a glass that is more specific to their unique requirements. It is for this reason that the formula given is for representative purposes only. The glass would then be considered a “modified soda lime” formulation.
In operation 104, the glass sheet is heated to at least 1000° Fahrenheit. Typically, the glass sheet is heated to approximately 1,200° F. to 1,600° F. This high temperature is substantially at or above the glass's softening point. In one embodiment, a tempering furnace can be used to heat the glass sheet. The tempering furnace may be of a continuous roller-type, fixtured roller-type, or gas-type. A gas-type tempering furnace has a plurality of blocks disposed beneath a plurality of radiant heaters. Typically, a glass sheet is placed inside the tempering furnace where the glass sheet is heated by conventional radiation, convection, and conduction heat. The glass sheet is moved along the blocks, or rollers, at a predetermined rate, which depends upon the thermal conductivity of the glass sheet.
In operation 106, an air quench is applied to the glass sheet to rapidly extract heat uniformly from both surfaces of the glass sheet, thus generating a heat-treated or tempered glass sheet. The air quench typically is applied by an air stream system. The air stream system can comprise arrays of fixed, reciprocating, or rotating nozzles. Heat is extracted uniformly from both surfaces of the glass sheet, and the quench is sustained long enough to prevent reheating of the glass surfaces from the still-hot center of the glass sheet. Uneven heat extraction may produce bow or warp. The quenched condition becomes stable when the glass sheet is reduced to a temperature of approximately 400° Fahrenheit to 600° Fahrenheit.
The immediate and sustained application of the air quench leaves the center of the glass sheet relatively hot compared to the surfaces. As the center area cools, it forces the surfaces and edges into a compressed state. As a result, a surface compression of at least 3,500 PSI to about 10,000 PSI is created.
The heat-treated glass sheet is then broken to produce heat-treated or standard fully tempered glass fragments, in operation 108. The heat-treated glass has a unique fracture pattern, which causes the glass to break into small polygonal and irregular shaped fragments having jagged edges and sharp corners. Glass that is not heat-treated as described above generally breaks into large sharp shards as illustrated in
Referring back to
In operation 402, the heat-treated polygonal and irregular shaped glass fragments are positioned in a tumbling apparatus. Although any tumbling apparatus capable of tumbling the heat-treated glass fragments over time can be utilized with the embodiments of the present invention,
In particular,
Embodiments of the present invention can process the broken heat-treated glass fragments either aqueously or non-aqueously. Hence, in operation 404, a decision is made as to whether the once heat-treated glass fragments will be processed aqueously. If aqueous processing will be performed, the process 110a branches to operation 406. Otherwise, the process 110a branches to operation 408.
As stated above, when aqueous processing will be performed, the process 110a branches to operation 406 where optional aqueous additives are introduced to the tumbling apparatus. Referring to
Referring back to
After adding any optional additives to the tumbling apparatus in operation 406, during aqueous processing, or operation 408, during non-aqueous processing, the tumbling process is commenced to smoothen the once heat-treated standard tempered glass fragments. Turning to
When an aqueous tumbling process is utilized, as described in operation 406, the heat-treated glass fragments can achieve a high degree of polished texture. Alternatively, a rougher texture can be achieved utilizing a non-aqueous tumbling process, as described in operation 408. Embodiments of the present invention typically tumble the once heat-treated standard tempered glass for a time period in the range of about 15 minutes to 2 hours, depending on the polishing effect desired. For example, shorter tumble times result in smooth bead-like heat-treated glass fragments that are less polished than result when using longer tumble times. In addition, longer tumble times generally result in more rounding of the heat-treated glass fragments than result using shorter tumble times. For example, tumbling the heat-treated glass fragments for 2 hours typically results in smooth, very rounded, bean-like or bead-like heat-treated glass fragments, or substantially rounded bead-like or bean-like shapes.
In operation 412, the smoothed, bead-like or bead-like heat-treated glass fragments are removed from the tumbling apparatus. As stated previously, the resulting smoothed, bead-like or bean-like heat-treated glass fragments are suitable for direct handling due to the removal of the sharp corners, sharp edges, and burrs.
Post process operations are performed in operation 414. Post process operations can include, for example, drying the smoothed, bead-like or bean-like heat-treated glass fragments during an aqueous tumbling process, cleaning additive material from the smoothed, bead-like or bean-like heat-treated glass fragments, and other post process operations that will be apparent to those skilled in the art after a careful reading of the present disclosure. In addition to smoothing the broken heat-treated glass pieces via tumbling, an embodiment of the present invention can produce smooth bead-like or bean-like heat-treated glass fragments via vibration, as described next with reference to
In operation 702, the heat-treated polygonal and irregular shaped glass fragments are positioned in a vibratory apparatus. Although any vibratory apparatus capable of tumbling the heat-treated glass fragments over time can be utilized with the embodiments of the present invention,
In particular,
As mentioned previously, embodiments of the present invention can process the broken heat-treated polygonal and irregular shaped glass fragments either aqueously or non-aqueously. Hence, in operation 704, a decision is made as to whether the heat-treated glass fragments will be processed aqueously. If aqueous processing will be performed, the process 110b branches to operation 706. Otherwise, the process 110b branches to operation 708.
As stated above, when aqueous processing is performed, the process 110b branches to operation 706 where optional aqueous additives are introduced to the vibratory apparatus. Referring to
Referring back to
After adding any optional additives to the vibratory apparatus in operation 706, during aqueous processing, or operation 708, during non-aqueous processing, the vibration process is commenced to smooth the heat-treated polygonal and irregular shaped glass fragments. Turning to
When an aqueous vibratory process is utilized, as described in operation 706, the heat-treated glass fragments can achieve a high degree of polished texture. Alternatively, a rougher texture can be achieved utilizing a non-aqueous vibratory process, as described in operation 708. Embodiments of the present invention typically vibrate the heat-treated glass fragments for a time period in the range of about 15 minutes to 2 hours, depending on the polishing effect desired. For example, shorter vibration times result in smoothed heat-treated glass fragments that are less polished than result when using longer vibration times. In addition, longer vibration times generally result in more rounding of the heat-treated glass fragments than result using shorter vibration times. For example, vibrating the sharp heat-treated glass fragments for 2 hours can typically result in smooth, very rounded, bean-like or bead-like heat-treated polygonal and irregular shaped glass fragments, or substantially rounded bead-like, or bean like shaped once heat-treated standard tempered polygonal and irregular shaped glass fragments.
In operation 712, the smoothed, bead-like or bean-like heat-treated glass fragments are removed from the vibratory apparatus. As stated previously, the resulting smoothed, bead-like or bean-like heat-treated glass fragments are suitable for direct handling and can be utilized in various projects including in art, decoration, facade, stone work, lapidary, construction, paving, laminates, decorative, functional and nonfunctional interior and exterior decorating.
Post process operations are performed in operation 714. Post process operations can include, for example, drying the smoothed, bead-like or bean-like heat-treated glass fragments during an aqueous process, cleaning additive material from the smoothed, bead-like or bean-like heat-treated glass fragments, and other post process operations that will be apparent to those skilled in the art after a careful reading of the present disclosure.
As mentioned above, the smoothed, bead-like or bean-like heat-treated polygonal and irregular shaped glass pieces can be utilized in a variety of projects. In addition, because the smoothed glass pieces have been heat-treated, they can be utilized in heat related building and art projects, such as fire pits and fireplaces.
Normal, non-heat-treated glass subjected to the heat of the gas fire 902 will distort, explode, melt, or otherwise be damaged from the heat. However, because the smoothed bead-like or bean-like polygonal and irregular shaped glass pieces 904 of the embodiments of the present invention have been heat-treated, for example once heat treated standard fully tempered or toughened glass, the smoothed, bead-like or bean-like heat-treated polygonal and irregular shaped glass pieces 904 will not distort, explode, or otherwise be damaged by the gas fire 902. This allows for a clean burning gas fire 902. The gas fire in the fireplace can have a temperature range of 400° to 700° Fahrenheit. This temperature range for the burning natural gas or propane assures that it is clean burning, or soot free. This temperature range also eliminates any carbon monoxide from the exhaust making it safer than other burning products. In addition, the smoothed, bead-like or bean-like heat-treated polygonal and irregular shaped glass fragments 904 radiate heat and allow increased efficiency because nothing blocks the radiant heat from the gas fire 902 and the heated glass fragments 904.
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within scope and equivalents of the invention.
This application is a continuation-in-part of application Ser. No. 15/467,638 by Edgar E. Jaunzemis, filed on Mar. 23, 2017 which is a continuation of application Ser. No. 14/821,725 by inventor Edgar E. Jaunzemis, filed on Aug. 8, 2015, now U.S. Pat. No. 9,700,987, entitled “Tumbled, Polished, Vibrated Broken Tempered Glass Pieces,” which is a continuation-in-part of application Ser. No. 13/863,373 by inventors Edgar E. Jaunzemis and Claudia S. Jaunzemis, filed on Apr. 15, 2013, now U.S. Pat. No. 9,808,905, entitled “Tumbled, Polished, Vibrated Broken Tempered Glass Pieces,” which is a divisional of U.S. patent application having Ser. No. 13/180,434, filed on Jul. 11, 2011, now U.S. Pat. No. 8,419,505, by inventors Edgar E. Jaunzemis and Claudia S. Jaunzemis, and entitled “Tumbled, Polished, Vibrated Broken Tempered Glass Pieces,” which is a continuation of U.S. patent application having Ser. No. 11/319,957, filed on Dec. 28, 2005, now U.S. Pat. No. 7,976,360, by inventors Edgar E. Jaunzemis and Claudia S. Jaunzemis, and entitled “Tumbled, Polished, Vibrated Broken Tempered Glass Pieces,” which is a continuation-in-part of U.S. patent application having Ser. No. 10/413,620, filed on Apr. 14, 2003, by inventors Edgar E. Jaunzemis and Claudia S. Jaunzemis, and entitled “Tumbled, Polished, Vibrated Broken Tempered Glass Pieces,” which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15467638 | Mar 2017 | US |
Child | 17557437 | US |