Tunable add/drop optical filter

Information

  • Patent Grant
  • RE37044
  • Patent Number
    RE37,044
  • Date Filed
    Tuesday, February 23, 1999
    25 years ago
  • Date Issued
    Tuesday, February 6, 2001
    23 years ago
Abstract
In all-optical networks, optical switching and routing become the most important issues for interconnecting the transport network layers. This invention describes a novel tunable optical add/drop filter for the all-optical wavelength-division-multiplexing (WDM) network applications. This filter can add or drop part of the high transmission capacity signals of a WDM link. It can be used to decentralized access point in the access network or as small core network node to realizing branching points in the network topology. It works in both wavelength and space domains. It has the advantages of: 1) High throughput and low voltage operation; 2) Wide tuning range and therefore, high channel capacity; 3) High isolation and high directivity between input and output ports; 4) Compact device packaging is possible as compares to the conventional grating and mechanical switching type of add/drop filter; 5) Multiple ports add/drop tunable filters can be realized with this invention to interconnect multiple WDM networks. This novel add/drop filter can be used in various WDM topologies. It enhances the performance of the conventional tunable filter by re-routing the rejected wavelengths back to network, which not only save the precious optical energy, but also cut down the return loss of the device.
Description




FIELD OF THE INVENTION




In this invention, a tunable add/drop filter for the wavelength-division-multiplexing (WDM) network applications is described. This filter can add or drop part of the high transmission capacity signals of a WDM link.




BACKGROUND OF THE INVENTION




The communication environment is evolving towards increasingly heterogeneous but interconnected networks. The growth of demand for existing services and the introduction of new advanced services is expected to create a large increase of traffic flow in the near future. The current evolution of telecommunication network is led by asynchronous and synchronous transfer modes (Asynchronous Transfer Mode(ATM), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH)), which require primarily electronic technologies for processing and switching. Although the necessary hardware building blocks are available to design wide area networks, complex issue arises with issues arise with the management of network resources. In order to simplify the transfer task, the layer structure of the transport network and the use of optical means are preferred.




In all-optical networks, optical switching and routing become the most important issues for interconnecting the transport network layers. This invention describes a tunable optical add/drop filter for the optical WDM network application. This filter can add or drop part of the high transmission capacity signals of a WDM link. It can be used to decentralized access point decentralize access points in the access network or as a small core network node to in realizing branching points in the network topology. It works in both wavelength and space domains.




The following describes various device structures that have been used for the add/drop filter design. The first structure [Cheung, “Acoustoopic Tunable Filters in Narrowband WDM networks: System Issues and Network Applications,” IEEE J. Sele. Area Comm. 8(6), 1015, 1990.] uses four 1×N demultiplexers and N's 2×2 optical switches. The structure is complicated and the interconnections are difficult.




The second tunable add/drop filter, similar to the first geometry, has recently been proposed and demonstrated by Glance at AT&T. [Glance, “Tunable add/drop optical filter providing arbitrary channel arrangement”, IEEE Photon. Lett., 7(11), 1303, 1995 and U.S. Pat. No. 5,488,500.] This filter provides the advantage of arbitrary channel arrangement, but still suffers a costly 6 dB optical coupling loss, because of the two array waveguide grating demultiplexers used in the structure.




The third type of wavelength-space switch [Dono et al, “A wavelength division multiple access network for computer communication”, IEEE J. Sol. Area Comm., 8(6), 983, 1990.] has been widely used in various WDM networks, for example the IBM Rainbow Network. This structure uses a passive star-coupler that combines and splits the incoming light signals into N receivers. The receivers built with a tunable filter then select the desired channels. It has the broadcast capability and the control structure of this implementation is very simple. However, the undesirable feature of the broadcast star, the splitting loss can be very high when the users number is large. an undesirable feature of the broadcast star is that splitting losses can be very high when the number of users is large.




The add/drop filter presented in this invention can re-route the unused channels, which are rejected by the tunable filter, back to the network and save the precious optical energy in the network. It includes the design of an optical isolator, that also dramatically cuts down the return loss of the device, another important performance requirement for high-speed WDM devices. It operates in both wavelength and space domains that provides hybrid functionality with a relatively simple structure. It is ideal for the WDM applications.











DESCRIPTION OF THE DRAWINGS





FIGS. 1



a,




1




b


are the building blocks of a tunable add/drop optical filter of this invention. It consists of three primary parts of non-reciprocal optical setup, tunable filter, and reciprocal optical setup.





FIG. 2

is a schematic representation of an exemplary tunable add/drop filter of this invention.





FIGS. 3



a,




3




b


are schemes illustrating the operation of a tunable add/drop filter of this invention. The polarization states progressing through the optical elements is indicated and the definition of the signs are shown in the insert.





FIG. 4

is a structure representation of an exemplary tunable add/drop filter of this invention which incorporates a liquid crystal Fabry-Perot tunable filter. A pair of half waveplates are added into the two light paths, respectively, to rotate the polarizations match to the optical axis to the liquid crystal Fabry-Perot tunable filter.





FIG. 5

is a schematic representation of a multi-port add/drop tunable filter. The input/output ports have multiple fibers that carry the optical signals from multiple WDM networks. Each add/drop layer can independently drop or add a desired optical frequency through the sectioned tunable filter.





FIGS. 6



a,




6




b,




6




c


show optical switches combined with tunable add/drop filters to form tunable multiple-port add/drop filters.











SUMMARY DESCRIPTION OF THE INVENTION




The present invention includes a tunable add/drop filter that utilizes the unique operational characteristics of a non-reciprocal optical setup and a reciprocal optical setup for wavelength re-routing, and a tunable filter for wavelength selection. The non-reciprocal optical setup provides the functionality for optical channels to go in and out of the filter with high isolation. The reciprocal optical setup is used to keep the light were paths stay the same during the add/drop operations. In between the two optical setups, a filter is inserted to select the desired channels that pass through the add/drop filter.




In exemplary embodiments of the present invention, Fabry-Perot type filters and polarization interference filters are used. The non-reciprocal optical setup may comprise of a Faraday Rotator, a birefringent element, a polarizing beam combiner, and a right angle prism. The reciprocal optical setup may comprises of comprise a pair of birefringent elements with their polarization eigen plane planes orthogonal to each other and are ±45° to that of the birefringent element in the non-reciprocal setup, respectively. To properly recombine the two orthogonally polarized light waves at the add/drop port the thickness of each of the two birefringent elements in the reciprocal setup is


1/{square root over (2)} times the thickness


of the birefringent element in the non-reciprocal setup.




Other features and embodiments of the present invention will become clear to those of ordinary skill in the art by reference to the drawings and accompanying detailed description.




DESCRIPTION OF THE PREFERRED EMBODIMENT




The core of this tunable add/drop filter composes of a comprises a tunable filter


55


, a non-reciprocal optical return setup


54


, and a reciprocal optical setup


56


, as shown in FIG.


1


. The spectra changed in the filter can be understood from


700


and


701


for the adding and dropping operations, respectively. In


700


adding operation (

FIG. 1



a


), the channel (wavelength) to be added into the WDM network is in


711


and enters from


52


. It combines with the spectrum


712


, which already exists in the network, and exit exits at


53


with a combined spectrum


713


. In dropping operation


701


(

FIG. 1



b


), the network spectrum is


722


. It drops part of the spectrum


721


to


52


. The rest of the returned channels then re-routes re-


route


through


53


and go back to the network with a spectrum


723


.




The light wave propagates propagation within the add/drop filter can be further explained as follow follows. In the dropping operation, the incoming network signals carry carrying multiple wavelengths enter from port


51


. The non-reciprocal optical setup


54


passes spectrum


722


to the tunable filter


55


. The selected channel


721


passes through the filter and the reciprocal setup


56


, and exit exits at port


52


. The rejected channels by the tunable filter, on the other hand, reflects reflect back to the non-reciprocal setup


54


. Because of the non-reciprocal property of


54


, light propagates backward in a different path as in from the forward propagating direction path. Therefore, it exits at port


53


and completes the dropping operation.




For the added operation, optical signal


711


to be added into the network enters from port


52


. Because of the reciprocal setup of


56


, light traveling in the reverse direction follows exactly the same path as it did in the forward direction. Therefore, spectrum


711


passes through the filter


55


that has been tuned to the channel and enters the non-reciprocal setup


54


. Because of the non-reciprocal optical path arrangement, this added channel joins the rest of the rejected channels rejected by the filter in the backward propagating direction and exits at port


53


. This completes the adding operations.




A preferred structure of this invention is shown in FIG.


2


. The non-reciprocal setup is built by a combination of a Faraday rotator


25


, a birefringent element


21


, a polarization beam combiner


15


, and a right angle prism


14


. The optical reciprocal setup is comprised of a pair of birefringent elements


22


/


23


with their polarization eigen planes


212


/


213


perpendicular to each other, and are ±45° relative to the polarization eigen plane


211


of the birefringent element in the non-reciprocal setup. The polarization eigen plane is defined by the plane that contains the optical axis of the birefringent element and also is the plane that contains the two orthogonal polarization states, when an unpolarized light is incident onto the element. The add/drop channel is selected by the tunable filter


26


. The add/drop port is designated by


12


. The input and output ports to the WDM network are


11


and


13


.




The detailed operations of the add/drop tunable filter are shown in

FIG. 3

, which is the top view of the device. The polarization progression within the filter is also indicated. In

FIG. 3



a,


the forward dropping operation is realized by splitting the input polarization into two eigen orthogonal polarizations using the birefringent element


21


. These two light beams with polarization at (0°, 90°) are then rotated another 45° by the Faraday Rotator


25


which sits inside a magnet


29


and incident onto the filter


26


. The dropping channel passes through tunable filter


26


where it has been tuned to the desired resonant condition. The two spatially separated signals are recombined by the second and third birefringent element elements


22


and


23


oriented at ±45° and collected by the output lens


12


. Since the thickness of each of


22


and


23


is chosen to be only 1/{square root over (2)} of the first birefringent element


21


, the two polarizations can be combined into a single beam by orientating


23


at 90° with respect to


22


. This arrangement of beam displacement allows any incoming state of polarization to be efficiently transmitted through the add/drop filter in the forward direction.




For the channels (wavelengths) that are rejected by the tunable filter


26


, they backward propagate to


25


and are rotated another 45°. Because this is a non-reciprocal effect, the returned polarizations are in (90°, 0°) states and are orthogonal to their original input states. Hence, they travel at different paths when passing through


21


, as shown in

FIG. 3



b.


These two light beams are recombined by the right angle prism


14


and the polarization beam combiner


15


and send back to the WDM network.




Similarly, the added operation can be traced as shown in

FIG. 3



b.


The light signal to be added into the WDM network first splits its polarization by


22


and


23


combination with polarization angles of (+45°, −45°). This is based on the fact that the input and output of the combined elements (


22


and


23


) are reciprocal. This means that light traveling in the reverse direction (i.e. the adding operation) must follow exactly the same path as it does in the forward direction. Therefore, at the exit of this the combined birefringent element (


22


/


23


), the spatial walk-off and the polarizations are identical for both forward and backward traveling light waves. With filter


26


tuned to the added wavelength, light signal passes the filter and enters


25


. By adding another 45° polarization to its original state, the output polarizations become (90°, 0°), which are the same as the rejected wavelengths. They are then collected by the prism


14


and polarization combiner


15


and go into the WDM network as was explained above. This completes the add/drop operations.




The elements used in this invention are listed below for illustration. These shall not limit to the application, but are for illustration purposes only. The Faraday rotator can be those based on magneto-optic materials, for examples, yttrium iron garnet (YIG), bismuth-substituted rare earth iron garnet (RBilG), and holmium and terbium doped garnet crystals (HoTbBi)lG. The filter in this invention can be, piezo-tuned Fabry-Perot optical filters, liquid-crystal based Fabry-Perot tunable filters (U.S. Pat. No. 5,111,321, by Patel), tunable polarization interference filters (A. Title, Tunable birefringent filters, Optical Engineering, Vol. 20, pp. 815, 1981.), and acoustooptical tunable filters (X. Wang, Acousto-optic tunable filters spectrally modulate light, Laser Focus World, May 1993


1992


.). When fixed filters, for example the interference filters, are used in the invention, they result in fixed add/drop filters. The polarizing materials used for the reciprocal operation can be materials with optical anisotropy, for examples calcite, rutile, lithium niobate (LiNbO


3


), and yttrium orthovanadate YVO


4


. All these Faraday rotators, filters, and polarizing crystals are commercially available.




EXAMPLE 1




An example of the tunable add/drop filter can be realized by using a liquid-crystal Fabry-Perot tunable filter as shown in

FIG. 4. A

pair of halfwave plates are inserted in front of and behind of the liquid crystal filter. A halfwave plate satisfies the equation Δnd=λ/2, where Δn and d are the birefringence and thickness of the wave plate, and λ is the light wavelength. The first wave plate


27


is added into the light path


800


to change the polarization of the decomposed input light to match the 45° optic axis of the filter


99


. The second halfwave plate


28


, which is placed on the opposite side of the filter, rotates the extra-ordinary light wave into ordinary in light paths


801


. The two then recombines recombine by the birefringent elements


22


and


23


. The rest of the operations are explained in the previous embodiment.




Due to the spatial-light-modulation capability (2-Dimensional) of a liquid-crystal Fabry-Perot filter, a multiple-port add/drop tunable filter can be realized based on the current structure. As shown in

FIG. 5

, this multi-port add/drop tunable filter can be easily fabricated by patterning a liquid-crystal Fabry-Perot filter into sections, and spatially aligning a series of inputs and outputs ports together. Remember, this multi-port tunable add/drop filter has exactly the same number of birefringent elements, Faraday rotator, and filter as in the single-port design. The patterning of the liquid-crystal Fabry-Perot can also be achieved photolithographically on the controlling transparent indium-tin-oxide (ITO) electrodes. Therefore, costs saving on materials and a compact packaging are possible for this multi-port filter. Potential applications include, but not limit to, are not limited to multiple WDM networks interconnections where simultaneously simultaneous performances of add/drop channels at this filter node can be achieved.




It can also combine with a N×N optical switch at the add/drop ports. In this case, multiple WDM networks are interconnected to each other and exchange information on this optical node. It operates in wavelength-space domain and is transparent to users and operators. This versatile filter will release the complex design of the high-capacity WDM network and decentralized access point decentralize access points in the access networkor as . It may also be used as a small core network node to in realizing branching points in the network topology.




EXAMPLE 2




When a fixed filter, for example the interference filter, is used in this invention a high throughput passive add/drop filter is realized. Here, the add/drop channel is pre-defined by the interference filter. However, only such a wavelength can go in and out of the ports.




EXAMPLE 3




When an 1×2 optical switch is added onto the add/drop port, as shown in

FIG. 6



a,


the three-port add/drop filter becomes a four-port add/drop filter with it's input- and output-port separated.(See

FIG. 6



b


) Two of this these add/drop filters


811


can be further interconnected to form a wavelength-space switching node for multi-layered WDM systems. In

FIG. 6



c,


one of the add/drop port ports


823


of the each of the add/drop filter


811


is linked to the each other filters


811


are linked together. The channels between the two WDM systems


801


and


802


can then be shared through this interconnected optical node. Furthermore, because of the reciprocal nature of this add/drop filter at the add/drop port ports


821


and


822


, optical channels can still be loaded up and down from the its WDM network


801


and


802


, respectively. This greatly increase increases the flexibility design from the system's perspective.




THE ADVANTAGES OF THIS INVENTION




This tunable add/drop filter can be regarded as a combination of a tunable filter and an optical circulator. It has the merits of:




1. High throughput because all of the optical energies are preserved by the re-routing characteristics of the add/drop operations.




2. Wide tuning range when liquid-crystal Fabry-Perot, piezoelectric Fabry-Perot, or acoustooptic tunable filter are used. Therefore, high channel capacity is obtainable.




3. High isolation and high directivity between input and output ports because of the use of Faraday rotator and birefringent materials.




4. Compact device packaging is possible, as compares compared to the conventional grating and mechanical switching type of add/drop filter.




5. When the tunable filter is a liquid-crystal Fabry-Perot type, multiple-port add/drop tunable filters can be realized by patterning the liquid-crystal Fabry-Perot filter into sections and spatially aligning an array of input and output fibers together. With the output ports connected to an N×N switch, a space-separated, wavelength-division demultiplexer can be realized. This multiple-port add/drop tunable filter can potentially be used to link multi-WDM networks without complicated electrooptic conversion at each networking node.



Claims
  • 1. A tunable add/drop filter which comprises comprising:a nonreciprocal setup for optical channels return to WDM network, a tunable filter for predetermined optical channel selection, and a reciprocal optical add/drop setup for add/drop operations, where, the non-reciprocal optical setup is a combination of an optical birefringent element which has a thickness of d, a Faraday rotator that rotates eigen polarization of input light beam by 45°, a polarization beam combiner and a right angle prism placed at an entrance side of the birefringent element to recombine returned optical signals; the tunable filter for selectively dropping or adding the optical channels; and the reciprocal optical add/drop setup comprises two optical birefringent elements with thickness of (1/2)d, and with their polarization eigen planes oriented at 45° and −45° relatively to a polarization eigen plane of the birefringent element in the non-reciprocal setup, respectively. wherein said non-reciprocal optical setup comprises a combination of an optical birefringent element, which has a thickness of d, and a Faraday rotator that rotates eigen polarization of input light beams by 45°, and wherein said non-reciprocal optical setup further comprises a polarization beam combiner and a right angle prism placed at an entrance side of said birefringent element to recombine returned optical signals.
  • 2. The tunable add/drop filter of claim 1, wherein said tunable filter is comprises a liquid crystal based, birefringent filter, a pair of halfwave plates are added to the front and back facets of the filter; said two halfwave plates are placed to intersect two orthogonally polarized incident light paths, respectively; a first one of the halfwave plates is placed on a first light path that rotates an ordinary light wave into extraordinary light wave that aligns a polarization of the light wave to an optical axis of the liquid crystal film; a second one of the halfwave plates is placed on a second light path that rotates the extra-ordinary light wave into ordinary light wave.
  • 3. The tunable add/drop filter of claim 2, wherein said tunable birefringent filter is a patterned liquid crystal based filter with a plurality of sections; each filter section can selectively filter through optical channel and said tunable add/drop filter forms a tunable multiple-port add/drop filter.
  • 4. The tunable add/drop filter of claim 1, wherein said reciprocal optical add/drop setup comprises two optical birefringent elements.
  • 5. The tunable add/drop filter of claim 1, wherein said tunable filter comprises a filter selected from the group consisting of: piezo-tuned, Fabry-Perot tunable filters; liquid crystal based Fabry-Perot tunable filters; tunable polarization interference filters; and acoustooptic tunable filters.
  • 6. The tunable add/drop filter of claim 1, wherein said tunable filter further comprises a pair of halfwave plates, each of said pair located on opposite sides of said filter, respectively.
  • 7. A tunable add/drop filter comprising:a tunable filter which is selectively adjustable to pass only desired frequencies of light waves; means for splitting an optical input polarization into two eigen orthogonal polarizations; means for rotating said two orthogonal eigen polarizations by 45° and passing the rotated orthogonal eigen polarizations to a first side of said tunable filter; means for spatially combining an optical output from a second side of said tunable filter; means for spatially combining undesired frequencies of said two orthogonal eigen polarizations which are rejected by said tunable filter; and means for outputting a combination of said undesired frequencies.
  • 8. The tunable add/drop filter of claim 7, further comprising means for inputting an optical signal to said second side of said tunable filter; andmeans for splitting said optical signal into two eigen orthogonal polarizations and passing the split optical signal to said second side of said tunable filter; and means for spatially combining desired frequencies of said split optical signal which are outputted from said first side of said tunable filter with said undesired of frequencies of said two orthogonal eigen polarizations which are rejected by said tunable filter and outputting a combined signal through said means for outputting.
  • 9. A tunable add/drop filter comprising: selectively adjustable means for passing only desired frequencies of light waves; means for splitting an optical input signal into two eigen orthogonal polarizations; means for rotating said two orthogonal eigen polarizations by 45° and passing the rotated orthogonal eigen polarizations to a first side of said selectively adjustable means; means for spatially combining an optical output from a second side of said selectively adjustable means; means for redirecting frequencies of said two orthogonal polarizations, which are rejected by said selectively adjustable means, through said means for splitting such that said rejected frequencies follow different paths than the split optical input signal; and means for spatially combining said rejected frequencies of said two orthogonal eigen polarizations.
  • 10. The tunable add/drop filter of claim 9, further comprising means for outputting the combination of said rejected frequencies.
  • 11. The tunable add/drop filter of claim 9, further comprising:means for splitting a second optical input signal into two eigen orthogonal polarizations and passing the split second optical signal to said second side of said selectively adjustable means; means for directing frequencies of said split optical signal, which pass through said selectively adjustable means, along said different paths and with the same polarizations as said rejected frequencies of said first optical signal; and means for spatially combining said rejected frequencies of said first optical signal and the passed frequencies of said second optical signal.
  • 12. The tunable add/drop filter of claim 11, further comprising means for outputting the combination of said rejected frequencies of said first optical signal and the passed frequencies of said second optical signal.
  • 13. A tunable add/drop filter comprising:at least two input ports for inputting optical signals; selectively adjustable means for passing only desired frequencies of light waves; means for splitting an optical input signal from each said input port into two eigen orthogonal polarizations; means for rotating each pair of said two orthogonal eigen polarizations by 45° and passing the rotated orthogonal eigen polarizations to a first side of said selectively adjustable means; means for spatially combining outputs received from a second side of said selectively adjustable means to form optical outputs, wherein each optical output corresponds to a respective pair of said two orthogonal eigen polarization inputted to said first side of said selectively adjustable means; means for redirecting frequencies of each of said pairs of said two orthogonal polarizations, which are rejected by said selectively adjustable means, through said means for splitting such that said rejected frequencies follow different paths than the split optical input signals; and means for spatially combining said rejected frequencies, wherein each spatial combination of rejected frequencies corresponds to a respective pair of said two orthogonal eigen polarizations rejected from said first side of said selectively adjustable means.
  • 14. The tunable add/drop filter of claim 13, further comprising at least two output ports for outputting said spatial combinations of rejected frequencies.
  • 15. The tunable add/drop filter of claim 14, wherein a number of said input ports equals a number of said output ports.
  • 16. The tunable add/drop filter of claim 13, further comprising:at least two input ports for inputting optical add signals; means for splitting said optical add input signal into two eigen orthogonal polarizations each, and passing the split optical add signals to said second side of said selectively adjustable means; means for directing frequencies of said split optical add signals, which pass through said selectively adjustable means, along said different paths and with the same polarizations as said rejected frequencies of said optical input signals; and means for spatially combining said rejected frequencies of said optical input signal and the passed frequencies of said optical add signals, wherein each spatial combination of rejected frequencies and passed frequencies corresponds to a respective pair of said input ports for inputting optical signals and said input ports for inputting optical add signals.
  • 17. The tunable add/drop filter of claim 16, further comprising means for outputting said spatial combinations of said rejected frequencies and said passed frequencies.
  • 18. The tunable add/drop filter of claim 17, wherein said means for outputting comprises at least two output ports.
  • 19. The tunable add/drop filter of claim 18, wherein a number of said input ports for inputting optical signals, said input ports for inputting optical add signals, and said output ports are all the same.
  • 20. A tunable add/drop filter comprisinga nonreciprocal setup for optical channels return to WDM network, a tunable filter for predetermined optical channel selection, and a reciprocal optical add/drop setup for add/drop operations, wherein said reciprocal optical add/drop setup comprises two optical birefringent elements, and wherein said two optical birefringent elements of said reciprocal optical add/drop setup have polarization eigen planes oriented at 45° and −45° relative to a polarization eigen plane of said birefringent element in said non-reciprocal setup, respectively.
  • 21. The tunable add/drop filter of claim 20, wherein said non-reciprocal optical setup comprises a combination of an optical birefringent element, which has a thickness of d, and a Faraday rotator that rotates eigen polarization of input light beams by 45°.
  • 22. The tunable add/drop filter of claim 21, wherein said non-reciprocal optical setup further comprises a polarization beam combiner and a right angle prism placed at an entrance side of said birefringent element to recombine returned optical signals.
  • 23. The tunable add/drop filter of claim 21, wherein said reciprocal optical add/drop setup comprises two optical birefringent elements, each having a thickness of (1/2)d, and with their polarization eigen planes oriented at 45° and −45° relative to a polarization eigen plane of said birefringent element in said non-reciprocal setup, respectively.
  • 24. The tunable add/drop filter of claim 23, wherein said tunable filter further comprises a pair of halfwave plates, each of said pair located on opposite sides of said liquid crystal based, birefringent filter, respectively.
  • 25. The tunable add/drop filter of claim 20, wherein said tunable filter comprises a liquid crystal based, birefringent filter.
  • 26. The tunable add/drop filter of claim 25, wherein said tunable filter comprises a patterned liquid crystal based, birefringent filter with a plurality of sections.
  • 27. The tunable add/drop filter of claim 20, wherein said tunable filter comprises a filter selected from the group consisting of: piezo-tuned, Fabry-Perot tunable filters; liquid crystal based Fabry-Perot tunable filters; tunable polarization interference filters; and acoustooptic tunable filters.
  • 28. A tunable add/drop filter comprisinga nonreciprocal setup for optical channels return to WDM network, a tunable filter for predetermined optical channel selection, and a reciprocal optical add/drop setup for add/drop operations, wherein said non-reciprocal optical setup comprises a combination of an optical birefringent element, which has a thickness of d, and a Faraday rotator that rotates eigen polarization of input light beams by 45°, and wherein said reciprocal optical add/drop setup comprises two optical birefringent elements, each having a thickness of (1/2)d, and with their polarization eigen planes oriented at 45° and −45° relative to a polarization eigen plane of said birefringent element in said non-reciprocal setup, respectively.
  • 29. The tunable add/drop filter of claim 28, wherein said tunable filter further comprises a pair of halfwave plates, each of said pair located on opposite sides of said liquid crystal based, birefringent filter, respectively.
  • 30. The tunable add/drop filter of claim 28, wherein said tunable filter comprises a filter selected from the group consisting of: piezo-tuned, Fabry-Perot tunable filters; liquid crystal based Fabry-Perot tunable filters; tunable polarization interference filters; and acoustooptic tunable filters.
US Referenced Citations (16)
Number Name Date Kind
4744075 Buhrer May 1988
5111321 Patel May 1992
5132826 Johnson et al. Jul 1992
5231521 Johnson et al. Jul 1993
5243455 Johnson et al. Sep 1993
5245451 Wu et al. Sep 1993
5303314 Duling, III et al. Apr 1994
5414540 Patel et al. May 1995
5450427 Fermann et al. Sep 1995
5469455 Reitz et al. Nov 1995
5481402 Cheng et al. Jan 1996
5488500 Glance Jan 1996
5488679 Wu Jan 1996
5513194 Tamura et al. Apr 1996
5579420 Fukushima Nov 1996
5612805 Fevrier et al. Mar 1997
Non-Patent Literature Citations (6)
Entry
Melman et al., “Tunable birefringent wavelength-division multiplexer/demiutiplexer”, Electronic Letters, vol. 21, No. 15, pp. 634-635, Jul. 1985.
Glance, Tunable Add/drop Optical Filter Providing Arbitrary Channel Arrangements, IEEE Photon. Lett., 7(11) 1303, 1995.
Dono et al., “A Wavelength Division Multiple Access Network For Computer Communication”, IEEE J. Sol. Area Comm., 8(6), 983, 1990.
Title, “Tunable Birefringenet Filters”, Opt. Engrg., vol. 20, pp. 815, 1981.
Wang, “Acousto-optic Tunable Filters Spectrally Modulate Light”, Laser Focus World, May 1992.
Cheung, “Acoustooptic Tunable Filters in Narrowband WDM Networks: System Issues and Network Applications” IEEE J. Sele. Area Comm. 8(6), 1015, 1990.
Divisions (1)
Number Date Country
Parent 08/629523 Apr 1996 US
Child 09/257555 US
Reissues (1)
Number Date Country
Parent 08/629523 Apr 1996 US
Child 09/257555 US