The present invention relates to a filter device and method, and, in particular embodiments, to a tunable bandpass filter device and method.
The wireless spectrum is heavily segmented. For a given frequency band, a wireless provider may only have 20 MHz of the frequency spectrum out of the whole band. Wireless base transceiver stations (BTSs) have filters to interface with the antenna. Filters in each BTS match with the frequency spectrum possessed by the wireless provider. Therefore many types of filters may be used in a given wireless service provider's network. Filters are large and heavy, however, accounting for approximately 20% of the BTS form factor. Furthermore, current base stations with fixed bandpass filters offer very limited upgradability once installed in the field.
Tunable filters can reduce the numbers of types filters used in a given network, and simplify logistic management. Tunable filter technology generally allows a base station to be reconfigured/upgraded after installation. Most tunable filters in BTSs use a mechanical motor to drive a tuning mechanism to change the filter's frequency. The mechanical motor and tuning mechanism increase filter size and may cause reliability issues.
In an embodiment, a tunable bandpass filter is provided. The filter includes a tunable resonator including an electrically reconfigurable capacitor bank, a tuning screw, and a resonating structure. The filter also includes an input operably coupled to the tunable resonator and an output port operably coupled the tunable resonator.
In an embodiment, a tunable bandpass filter is provided. The filter includes a plurality of tunable resonators. Each of the tunable resonators includes an electrically reconfigurable capacitor bank, a tuning screw, and a resonating structure. The filter also includes a plurality of coupling structures to operably couple the tunable resonators together. The filter further includes an input port and an output port operably coupled to one or more of the plurality of the tunable resonators.
In an embodiment, a wireless communications device is provided. The device includes a duplexer operably coupled to an antenna, an amplifier operably coupled to the duplexer, and a tunable bandpass filter operably coupled to the duplexer and to the amplifier. The filter includes a tunable resonator having an electrically reconfigurable capacitor bank.
In an embodiment, a method of fabricating a tunable bandpass filter is provided. The method includes forming a tunable resonator with an electrically reconfigurable capacitor bank, a tuning screw, and a resonating structure. The method also includes operably coupling an input port and an output port to the resonator.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
The making and using of the present embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative and do not limit the scope of the disclosure.
The present disclosure will be described with respect to a specific context, namely a wireless communications system that supports communications devices with data capability, i.e., third-generation (3G) and fourth-generation (4G) communications devices. The concepts of the present disclosure may also be applied, however, to wireless communications systems that support data capable communications devices in general.
Referring now to
As shown in
The coupling structure 14 permits the tunable resonators 12 to be operably coupled to each other. In an embodiment, the coupling structure 14 is a coupling iris having a length of about 24 mm and a height of about 6 mm. The input and output ports 16 permit the filter 10 to be incorporated into a wireless communication device (e.g., a time division duplexing (TDD) base station, another type of base station employing filters, etc.) or operably connected to other telecommunications devices. By way of example, the input port 16 may be coupled to an antenna and the output port may be coupled to a power amplifier. In an embodiment, the filter 10 includes a lid 18 disposed over the tunable resonators 12.
Referring now to
The body 26 may be formed in a variety of shapes (e.g., rectangular, square, etc.) and from a variety of suitable materials such as, for example, copper. As shown, the body 26 of the tunable resonator 12 generally defines a metallic cavity 28. In an embodiment, the cavity 28 is three dimensional, which design enables high power operation for base stations, and has a height of approximately 30 mm, a width of approximately 30 mm, and a length of approximately 30 mm. In an embodiment, the body 26 of the tunable resonator 12, or some portion thereof, functions as a ground.
Still referring to
In an embodiment, the capacitor bank 20 is coupled to the tuning screw 22 by a PCB threaded insert 36 disposed above a Teflon spacer 38. The tuning screw 22 (i.e., tuning disk) includes a vertical portion 40 and a horizontal portion 42. As shown, the horizontal portion 42 extends down into the cavity 28 and is disposed above the resonating structure 24. A gap 44 is defined between a bottom surface of the horizontal portion 42 of the tuning screw 22 and an upper surface of the resonating structure 24. As will be more fully explained below, the capacitance of the resonator 12 generally correlates to the sum of the capacitances provided by the gap 44 and one or more of the capacitors 32. The variable capacitance of the capacitor bank 20 allows for continuously tunable operation.
In an embodiment, the tuning screw 22 may be manually rotated to drive the horizontal portion 42 upwardly to increase the size of the gap 44 or downwardly to decrease the size of the gap 44 in order to provide initial tuning of the filter 10. In another embodiment, the tuning screw 22 may be mechanically driven by, for example, a mechanical motor, to drive the horizontal portion 42 upwardly to increase the size of the gap 44 or downwardly to decrease the size of the gap 44 in order to provide initial tuning of the filter 10. In another embodiment, the tuning screw 22 may be both manually and mechanically rotated to alter the size of the gap 44.
In an embodiment, the resonating structure 24 is a metal cylinder having a height of approximately 21 mm and a radius of approximately 6 mm. In other embodiments, the resonating structure 24 may take other shapes and have other sizes in other embodiments. In an embodiment, the resonating structure 24 is formed from copper. The resonating structure 24 may be integrally formed with the body 26 of the resonator 12.
Referring now to
As collectively shown in
As proof of the concept, one of the resonators 12 was constructed. In that example, the resonator 12 was formed by machining copper (i.e., the resonator body 26 was copper). The inside surfaces of the cavity 28 were silver plated to provide a higher Q value. The capacitor bank 20 was mounted on the lid 18 of the resonator 12 and held in place with silver epoxy. The capacitor bank 20 included four high-Q multi-layer capacitors from Johanson Technology, the values of which were C1=0.2 picoFarad (pF), C2=0.5 pF, C3=0.6 pF, and C4=0.7 pF. As used herein, high-Q generally indicates a Q value of greater than about 150 at 2.5 giga Hertz (GHz). The capacitor bank 20 also included four Radant single-pole, single-throw (SPST) RF-MEMS switches 34. Each switch 34 was actuated with a voltage of ninety volts (90 V) and zero DC current (which accounts for close to zero power consumption). The measured tuning response of the resonator 12 is graphically illustrated in
As shown in the graph 52 of
As further proof of the concept, one of the filters 10 was also constructed. In particular, a two-pole filter 10 was constructed using a pair of resonators 12 coupled as noted above. In this case, the resonators 12 were formed from an aluminum body 26 plated with copper. The measured tuning response of the filter 10 is graphically illustrated in
Referring now to
Referring now to
The various embodiment filters 10 disclosed herein may decrease the volume occupied by cavity filters in base-stations. In addition, embodiment filters 10 may reduce the number of filter products implemented in a given base station system. In the alternative, the tunable filters 10 may be similar in size compared with prior art fixed frequency bandpass filters with similar performance specifications. Moreover, unlike traditional motor-based tunable filters, where frequency tuning is done by a motor mechanically driving tuning screws, the filter 10 employs electrically reconfigurable capacitor banks 20 and/or manually or mechanically adjusted tuning screws 22 to tune filter center frequency. In an embodiment, no mechanical movement of any part in the filter is needed during the tuning process.
Although embodiments described hereinabove operate within the specifications of a cellular communication network such as a 3GPP-LTE cellular network, other wireless communication arrangements are contemplated within the broad scope of an embodiment, including WiMAX, GSM, Wi-Fi, and other wireless communication systems, including different frequency, capacitance, and filter-type specifications.
It is noted that, unless indicated otherwise, functions described herein can be performed in either hardware or software, or some combination thereof, with or without human intervention. In an embodiment, the functions are performed by a processor such as a computer or an electronic data processor in accordance with code such as computer program code, software, and/or integrated circuits that are coded to perform such functions, unless indicated otherwise.
While the disclosure has been made with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application claims the benefit of U.S. Provisional Application No. 61/567,506, filed on Dec. 6, 2011, entitled Tunable Bandpass Filter Device and Method, which application is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4100504 | McGann | Jul 1978 | A |
6351195 | Atokawa et al. | Feb 2002 | B1 |
6781476 | Tsunoda et al. | Aug 2004 | B2 |
7352264 | Schwab et al. | Apr 2008 | B2 |
20050012565 | Kamata et al. | Jan 2005 | A1 |
20050225411 | Sauder et al. | Oct 2005 | A1 |
20080024248 | Sieber et al. | Jan 2008 | A1 |
20090134960 | Larson et al. | May 2009 | A1 |
Entry |
---|
Fouladi, S., et al., “An Integrated Tunable Band-Pass Filter Using MEMS Parallel-Plate Variable Capacitors Implemented with 0.35μm CMOS Technology,” Microwave Symposium, 2007, IEEE/MTT-S International, pp. 505-508. |
Bakri-Kassem, M., et al., “Novel High-Q MEMS Curled-Plate Variable Capacitors Fabricated in 0.35-μm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, Feb. 2008, vol. 56, Issue 2, pp. 530-541. |
Park, S.J., et al., “High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter,” La Jolla, CA, IMS 2009 IEEE, pp. 1145-1148. |
Number | Date | Country | |
---|---|---|---|
20130142089 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61567506 | Dec 2011 | US |