This disclosure relates generally to white light sources, and in particular but not exclusively, relates to endoscopic light sources.
Endoscopy allows a physician to view organs and cavities internal to a patient using an insertable instrument. This is a valuable tool for making diagnoses without needing to guess or perform exploratory surgery. The insertable instruments, sometimes referred to as endoscopes or borescopes, have a portion, such as a tube, that is inserted into the patient and positioned to be close to an organ or cavity of interest.
Endoscopes first came into existence in the early 1800's, and were used primarily for illuminating dark portions of the body (since optical imaging was in its infancy). In the late 1950's, the first fiber optic endoscope capable of capturing an image was developed. A bundle of glass fibers was used to coherently transmit image light from the distal end of the endoscope to a camera. However, there were physical limits on the image quality this seminal imaging endoscope was able to capture: namely, the number of fibers limited the resolution of the image, and the fibers were prone to breaking.
Now endoscopes are capable of capturing high-resolution images, as endoscopes use various modern image processing techniques to provide the physician with as natural a view as possible. For example, the views provided by an endoscope may be capable of mimicking a natural feeling field and depth of view to emulate a physician seeing with her own eyes.
Non-limiting and non-exhaustive embodiments of the invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified. Not all instances of an element are necessarily labeled so as not to clutter the drawings where appropriate. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles being described.
Embodiments of a system and method for a tunable color-temperature white light source are described herein. In the following description numerous specific details are set forth to provide a thorough understanding of the embodiments. One skilled in the relevant art will recognize, however, that the techniques described herein can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Endoscopes are devices physicians use to view inside of patients without the need to perform exploratory surgery. In general, endoscopes are imaging devices with insertion tubes that are inserted into a patient through (small) incisions. The imaging device provides views from a tip (“distal end”) of the insertion tube and displays the view, for example, on a monitor for the physician. The imaging system may provide a stereoscopic view of an area of interest so that a more natural image is presented to the viewer. To generate the stereoscopic view, endoscopes may include multiple image sensors, where each image sensor provides an image of the area of interest from a slightly different perspective. The difference in perspective is intended to emulate the different perspective of human eyes. To further enhance endoscope imaging and aid physicians in diagnosis, the instant disclosure provides an elegant solution to produce substantially white light (or another operator-desired emission spectrum) at the distal end of the endoscope.
The color of an object depends on the spectrum of the illumination light source, as well as the object's own spectral reflectance. When imaging with an endoscope inside a cavity, the illumination source is located at the distal end. To make the colors look “natural” and recognizable to the surgeon, a white light source with a spectrum similar to daylight (e.g., a blackbody emission spectrum at 6500° K) is frequently preferred. However, to get the light to the tip of the endoscope, the light source needs to be well-coupled to a fiber optic cable so that the cable can efficiently carry the light to the tip. A broadband lamp or LED can be used as the light source, but coupling efficiency to the fiber may, in some situations, be limited. A laser can couple efficiently to a fiber optic cable; however, the monochromatic laser source will likely produce colors that look unnatural. This may impede the ability of the endoscope operator (e.g., surgeon) from making an accurate diagnosis or properly identify tissue. Additionally, in both the case of laser or broadband illumination, the source emission spectrum is fixed; what looks like “natural” coloring is subjective, so a tunable source is desirable.
As will be discussed in greater detail, a set of discrete lasers are coupled into an illumination fiber bundle, with the relative power of the lasers set by software. The user can set a temperature (T) in the software, and the relative power of the lasers is tuned by the software to illuminate the patient. Thus, the patient looks as if he/she was illuminated by blackbody radiation from an object with the temperature “T”. Additionally, in some embodiments, the user can input any source spectrum characteristics, and the software will tune the lasers to match the desired spectrum.
In the depicted embodiment, control logic 108 is coupled to receive user input (from computer system 114) and, in response to the user input, independently change the emission intensity of each light emitter in the plurality of light emitters. However, in a different embodiment, user instructions may be directly input into the endoscope (not an attached computer system 114). Although the illustrated embodiment shows endoscope body 102 hardwired to computer system 114, in other embodiments endoscope body 102 may have its own onboard computer system 114 and interface.
Although not depicted to avoid obscuring certain aspects, endoscope system 100 may have a lens system for transmitting images from an objective lens to the endoscope user (this may include a relay lens system or a bundle of fiber optics). Endoscope system 100 may also have one or more mechanical actuators to guide insertion of fiber optic cable 104, and maneuver fiber optic cable 104 through the body. Control logic 108 (e.g., a microcontroller) is disposed in the system and electrically coupled to the plurality of light emitters. The controller includes logic that when executed by the controller causes the controller to perform a myriad of operations. For example, in addition to controlling light output, control logic 108 may be able to control any of the aforementioned pieces of device architecture (e.g., lens system, image sensors, mechanical actuators, etc.). Control logic 108 may be able to precisely control the distances between lenses to focus an image captured by the endoscope, or manipulate the body of fiber optic cable 104 with the one or more mechanical actuators.
As illustrated, endoscope emission spectrum 120 includes five discrete emission peaks. To achieve the five peaks, five lasers are directed into a fiber. By tuning the relative power of the lasers, a scene with color that approximates user-observed blackbody emission spectrum 122 can be rendered. The depicted embodiment may contain, for example, five lasers, with center wavelengths of 415 nm, 462 nm, 520 nm, 575 nm, and 635 nm. All lasers may have a bandwidth of 1 nm. These five laser emission peaks may resemble user-observed blackbody emission spectrum 122 (which is similar to a 6,500° K blackbody emission spectrum).
Although the embodiment depicted in
One skilled in the art will observe several trends associated with the above blackbody emission spectra, and their corresponding endoscopic emission spectra: (1) when the temperature of the blackbody emission spectrum is less than 2,500° K the plurality of light emitters emit a monotonically increasing spectrum of light (where the light emitter in the plurality of light emitters with the shortest wavelength emission spectrum has the smallest amplitude, and the light emitter in the plurality of light emitters with the longest wavelength emission spectrum has a largest amplitude); (2) when the temperature of the blackbody emission spectrum is less than 4,000° K, the light emitter in the plurality of light emitters with the longest wavelength emission spectrum has the largest amplitude; and (3) when the temperature of the blackbody emission spectrum is greater than 4,000° K, the light emitter in the plurality of light emitters with the shortest wavelength emission spectrum has the largest amplitude.
Also shown in
To perform the calculations discussed above, and determine the color of an object (or square in the color checker) the tablet or other computer must calculate the color of an object in XYZ space. The illuminance spectrum (“I(λ)”) first has to be multiplied by the color-specific reflectivity spectrum (“R(λ), G(λ), B(λ)”) of the object. This spectrum is multiplied by the appropriate curve (
X=∫I(λ)R(λ)x(λ)dλ Equation 1:
Y=∫I(λ)G(λ)y(λ)dλ Equation 2:
Z=∫I(λ)B(λ)z(λ)dλ Equation 3:
In the representation of color, there are two primary concepts: “colorfulness” (i.e., the amount of color) and “luminosity” (i.e., the brightness of the color). It takes two terms to represent the colorfulness and one term to represent the luminosity. “Colorfulness” may be determined by calculating u′ and v′ using X, Y, and Z (see equations 4 and 5).
u′=4X/(X+15Y+3Z) Equation 4:
v′=9Y/(X+15Y+3Z) Equation 5:
When comparing the color to a reference illuminant, we can calculate Δ(u′v′) (see equation 6).
Δ(u′v′)=√((u′−u′ref)2+(v′−v′ref)2) Equation 6:
Ideally Δ(u′v′)≤0.030. In this range, the human eye has difficulty perceiving the difference between the colors. In other words, the optimization seeks to minimize the sum (or some other linear combination) of the difference between the color of a tile (or other color reference) under broadband normal illumination (e.g., blackbody illumination at 6500° K) and the color of that same tile under illumination from the set of lasers described here.
Block 501 shows selecting a light emission mode from a plurality of light emission modes. In one embodiment, the light emission mode is any one of the endoscopic emission spectrums corresponding to a blackbody emission spectrum depicted in
Block 503 illustrates emitting light from a plurality of light emitters in response to the light emission mode selected. In one embodiment, each light emitter in the plurality of light emitters emits a distinct bandwidth of the light. The bandwidth of light emitted by most light emitters in the plurality of light emitters may be less than 5 nm. In other embodiments, the bandwidth may be appreciably smaller, such as 1 nm or less.
Block 505 depicts transporting the light through a fiber optic cable; a first end of the fiber optic cable is optically coupled to the plurality of light emitters. In some embodiments, using lasers as the light source provides for extremely efficient light coupling to the fiber optic cable (relative to other white light sources).
Block 507 shows out-coupling the light from a second end of the fiber optic cable, and the light output from the second end of the fiber optic cable mimics a continuous emission spectrum to the human eye. In one embodiment, the light output from the second end of the fiber optic cable mimics a blackbody emission spectrum by having a Δ(u′v′)≤0.030 from the blackbody emission spectrum, in a CIELUV color space.
The above description of illustrated embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Number | Name | Date | Kind |
---|---|---|---|
5154707 | Rink | Oct 1992 | A |
8517929 | Kuroda et al. | Aug 2013 | B2 |
20030133292 | Mueller | Jul 2003 | A1 |
20050099824 | Dowling | May 2005 | A1 |
20050194876 | Shimada | Sep 2005 | A1 |
20060134001 | Frangioni | Jun 2006 | A1 |
20060173245 | Todd et al. | Aug 2006 | A1 |
20090075391 | Fulghum, Jr. | Mar 2009 | A1 |
20100010314 | Krattiger | Jan 2010 | A1 |
20110184243 | Wright et al. | Jul 2011 | A1 |
20110234782 | Ehrhardt et al. | Sep 2011 | A1 |
20110245607 | Hayashi | Oct 2011 | A1 |
20130038711 | Sato | Feb 2013 | A1 |
20130120678 | Chao | May 2013 | A1 |
20130188331 | Jaffe et al. | Jul 2013 | A1 |
20140336479 | Ando | Nov 2014 | A1 |
20140353696 | Kinoshita | Dec 2014 | A1 |
20150362151 | Van Bommel et al. | Dec 2015 | A1 |
20160213226 | Yanagidate | Jul 2016 | A1 |
20170331014 | Horie | Nov 2017 | A1 |
20180199803 | Kamee | Jul 2018 | A1 |
20180228355 | Daidoji | Aug 2018 | A1 |
20180289246 | Tabata | Oct 2018 | A1 |
20180368658 | Yamamoto | Dec 2018 | A1 |
20190021580 | Mishima | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
1 610 593 | Dec 2005 | EP |
200768699 | Mar 2007 | JP |
2012-191225 | Oct 2012 | JP |
2013-535084 | Sep 2013 | JP |
2015-11127 | Jan 2015 | JP |
2016-96935 | May 2016 | JP |
0136864 | May 2001 | WO |
WO 2004100611 | Nov 2004 | WO |
2010059197 | May 2010 | WO |
Entry |
---|
Relative spectral power distribution of CIE, International Commission on Illumination, 2 pages. |
International Search Report and Written Opinion dated Nov. 10, 2017, from the International Searching Authority, for International Application No. PCT/US20171043793, filed Jul. 25, 2017, 33 pages. |
Office Action dated Feb. 28, 2020, for Japanese Patent Application No. 2019-502001. (with English translation, 8 pages). |
Number | Date | Country | |
---|---|---|---|
20180028047 A1 | Feb 2018 | US |