This invention relates to the field of optoelectronic devices, and more particularly to resonant reflectors for use with optoelectronic devices.
Various forms of optoelectronic devices have been developed and have found widespread use including, for example, semiconductor lasers, semiconductor photodiodes, semiconductor photo detectors, etc. For some of these applications, an optoelectronic emitter such as a semiconductor laser is coupled to an optoelectronic detector (e.g., photodiode or Resonant Cavity Photo Detector) through a fiber optic link or even free space. This configuration can provide a high-speed communication path, which, for many applications, can be extremely beneficial.
The increased use of all-optical fiber networks as backbones for global communication systems has been based in large part on the extremely wide optical transmission bandwidth provided by optical fiber. This has led to an increased demand for the practical utilization of the optical fiber bandwidth, which can provide, for example, increase communication system user capacity. In the prevailing manner for exploiting optical fiber bandwidth, wavelength-division multiplexing (WDM) and wavelength-division demultiplexing (WDD) techniques are used to enable the simultaneous transmission of multiple independent optical data streams, each at a distinct wavelength, on a single optical fiber, with wavelength-selective WDM and WDD control provided for coupling of the multiple data streams with the optical fiber on a wavelength -specific basis. With this capability, a single optical fiber can be configured to simultaneously transmit several optical data streams, e.g., ten optical data streams, that each might not exceed, say, 10 Gb/s, but that together represent an aggregate optical fiber transmission bandwidth of more than, say, 100 Gb/s.
In order to increase the aggregate transmission bandwidth of an optical fiber, it is generally preferred that the wavelength spacing of simultaneously transmitted optical data streams, or optical data “channels,” be closely packed to accommodate a larger number of channels. In other words, the difference in wavelength between two adjacent channels is preferably minimized. The desire for closely-spaced optical transmission channels results in the need for fine wavelength resolution, which complicates the wavelength-selective WDM and WDD operations required for simultaneous transmission of the channels. Like WDM, Polarization Division Multiplexing (PDM) can also be used to extend the bandwidth of some optical data channels.
In general, exemplary embodiments of the invention are concerned with optical systems that employ guided-mode grating resonant reflector filter (“GMGRF”) to facilitate wavelength and/or polarization selectivity in the optical system. In one implementation, an optical system is provided that includes a first tunable detector and a second tunable detector. Each of the tunable detectors includes a GMGRF that is tuned to select a corresponding optical wavelength and/or polarization of an optical data channel. Typically, the optical wavelength and/or polarization of the optical data channel is different as between the first and second tunable detectors. Thus, in some implementations, an array of tunable detectors is employed to collectively select each of the wavelengths and/or polarizations of an optical data signal having a plurality of data channels.
Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:
FIG. WDM/WDD is a schematic diagram showing an illustrative GMGRF filter in accordance with the present invention;
Isolation region 29 restricts the area of the current flow 27 through the active region. Region 29 may be formed by deep H+ ion implantation. While a deep H+ implant is provided as an illustration, it is contemplated that any type of current and field confinement may be used, including for example, gain-guided, oxide-confinement, or any other means. The diameter “g” may be set to provide the desired active area, and thus the gain aperture of the VCSEL 10. Further, the diameter “g” may be set by the desired resistance of the p-type mirror stack 26, particularly through the non-conductive region 29. Thus, non-conductive region 29 performs the gain guiding function. The diameter “g” is typically limited by fabrication limitations, such as lateral straggle during the implantation step.
Spacer 18 may contain a bulk or quantum-well active region disposed between mirror stacks 16 and 26. Quantum-well active region 22 may have alternating layers of aluminum gallium arsenide (AlGaAs) barrier layers and GaAs quantum-well layers. InGaAs quantum wells may also be used in the active region, particularly where an emission wavelength (e.g., λ=980 nm) is desired where GaAs is transparent. Stacks 16 and 26 are distributed Bragg reflector (DBR) stacks, and may include periodic layers of doped AlGaAs and aluminum arsenide (AlAs). The AlGaAs of stack 16 is doped with the same type of impurity as substrate 14 (e.g., n type), and the AlGaAs of stack 26 is doped with the other kind of impurity (e.g., p type).
Metal contact layers 12 and 28 are ohmic contacts that allow appropriate electrical biasing of laser diode 10. When laser diode 10 is forward biased with a more positive voltage on contact 28 than on contact 12, active region 22 emits light 31 which passes through stack 26.
A typical near IR VCSEL requires high reflectivity (>99%). Thus, an all-semiconductor DBR typically requires 20-40 mirror periods with a thickness of 2-4 μm. As such, the epi-structure required for a complete VCSEL, including both top and bottom DBR mirrors surrounding an active spacer region typically includes over 200 layers having a thickness in excess of 7-8 μm.
As discussed in U.S. patent application Ser. No. 08/872534, entitled “Resonant Reflector For Improved Optoelectronic Device Performance And Enhanced Applicability”, a hybrid mirror structure may be used to reduce the overall mirror thickness.
The hybrid mirror structure includes, for example, a resonant reflector 52 and a DBR mirror 56. Although not explicitly shown, it is contemplated that the bottom mirror may also include a resonant reflector structure, if desired. It is known that a dielectric resonant reflector 52 is highly reflective on resonance, and may be more reflective than a corresponding DBR type mirror at the same wavelength. Thus, by using a hybrid approach, it is contemplated that the number of DBR mirror periods needed for a given reflectance may be reduced.
It is known that lateral straggle effects during ion implantation of the gain guiding region 62 through the DBR mirrors often limits the lateral dimension 64 of the active region to ≧10 μm. This directly impacts the minimum achievable threshold current, single mode operation, and indirectly impacts the speed of the VCSEL. By incorporating a resonant reflector into the top mirror, equivalent or superior reflectance properties in a structure five to ten times thinner may be achieved. This may translate into an ion implant that is more controllable, which may reduce the volume of the active region. A smaller active region may reduce the operating current and power of the device, improve planarity and thus the monolithic integrability of the VCSEL with electronics and smart pixels, and may provide a controllable single mode and single polarization emission with increased modal control.
It is recognized that the hybrid approach of
The resonant reflector 52 of
The three layers of resonant reflector 52 may form an anti-reflective region, which provides little reflectance for at least a predetermined range of wavelengths including a resonant wavelength. The grating multilayer waveguide structure shown at 52 causes the structure to become substantially more reflective, at least at the resonant wavelength.
Alternatively, the three-layer stack 52 may be designed to function both as a high -reflectivity coating for the VCSEL-structure substrate and independently as a guided-mode resonant reflector waveguide-grating. In this embodiment, the three-layer structure 52 forms a highly-reflective mirror region which provides reflectance for at least a predetermined range of wavelengths including a resonant wavelength (e.g., near 980 nm). The overall reflectance of the top mirror, including layers 66 and 68, may be less than that required for lasing. This may be accomplished by, for example, reducing the number of mirror periods in the top DBR mirror 56. Grating layer 58 causes the guided mode resonant reflector structure 52 to become substantially more reflective at least near the resonant wavelength. In either case, the number of DBR mirror layers beneath the resonant reflector 52 may be reduced relative to the conventional VCSEL construction shown in
Resonance is achieved in the resonance reflector 52 by matching the first-diffraction order wave vector of the grating 58 to the propagating mode of the waveguide 66. Since the latter depends on polarization, the reflectance is inherently polarization -selective. The resonant wavelength is determined primarily by the grating period 60, and the bandwidth is determined primarily by the modulation of the refractive index and fill factor of the grating 58.
The imaginary component “k” of the refractive index is related to optical absorption and electrical conductivity of the resonant reflector. The case k=10−5, which roughly corresponds to the minimum conductivity required to inject current through the resonant reflector, produces about 5 percent absorption. The same three layers, all with k=0, indicating a dielectric resonant reflector, produces theoretically 100 percent reflectance.
This graph illustrates the extreme sensitivity of the resonant reflector 52 to absorption, or more generally, to loss of any kind. Thus, to maximize the reflectance provided by the resonant reflector, the absorption (e.g. k=0) for each of the layers 58, 66 and 68 should be near zero. This means that the conductivity of the resonant reflector should also be zero (e.g., non-conductive).
Despite the advantages of using a resonant reflector in conjunction with a DBR mirror stack, it has been found that the reflectivity of the resonant reflector can be limited if not properly isolated from the DBR mirror stack.
To overcome this and other difficulties, the present invention contemplates isolating the resonant reflector from adjacent conducting layers. Isolation is preferably accomplished by providing a non-conductive (e.g. dielectric) buffer or cladding layer between the resonant reflector and the adjacent conducting layer of the optoelectronic device. The non-conductive cladding or buffer layer is preferably sufficiently thick, and/or has a sufficiently low refractive index relative to the refractive index of the waveguide of the resonant reflector, to substantially prevent energy in the evanescent tail of the guided mode in the waveguide from entering the adjacent conductive layer of the optoelectronic device. In a preferred embodiment, the waveguide is formed from a dielectric that has a higher refractive index than the refractive index of the buffer or cladding layer, and also higher than the average refractive index of the grating. The thickness of the waveguide preferably depends on the refractive index difference between the waveguide and the buffer or cladding layer.
In the illustrative embodiment, the grating layer 90 is SiO2 with an index of refraction of about 1.484 and a thickness of 0.340 μm. The waveguide layer 82 may be GaAs with an index of refraction of 3.523 and a thickness of 0.280 μm. Alternatively, the waveguide may be a ternary compound such as AlxGa1-xAs, with x close to one, or a high refractive index dielectric such as TiO2, ZrO2, HfO2, or Si3N4. The thickness of the waveguide preferably depends on the refractive index difference between the waveguide and the buffer or cladding layer. The cladding or buffer layer 80 in the illustrative embodiment is AlO, with an index of refraction of 1.6 and a thickness of 0.766 μm. Finally, the top DBR mirror layer 92 may be AlGaAs with an index of refraction of 3.418 and a thickness of 0.072 μm. In this embodiment, the cladding or buffer layer 80 has an increased thickness and a reduced index of refraction relative to the embodiment shown in
As indicated above, the cladding or buffer layer 80 may be AlO, which has a relatively low refractive index. In one method, this can be accomplished by initially forming the cladding or buffer layer 80 with AlGaAs, with a relatively high concentration of aluminum (e.g. >95%). AlGaAs has a relatively high index of refraction. Then, the waveguide layer 82 and grating layer 90 are provided. The cladding or buffer layer 80, waveguide layer 82 and grating 90 may then be removed around the periphery of the desired optical cavity. Contacts 93 may then be deposited on the exposed top mirror 86 to provide electrical contact to the top mirror. Then, the device may be subject to an oxidizing environment, which oxidizes the AlGaAs material of the cladding or buffer layer 80, resulting in AlO which has a relatively low refractive index. The AlGaAs material is preferably oxidized laterally in from the exposed edges of the cladding or buffer layer 80.
When the grating is formed from an oxide such as SiO2, the modulation of the refractive index is related to the difference between the dielectric constants of the grating material and the material that fills the spaces between the grating elements, divided by the average dielectric constant across the grating. The average dielectric constant across the grating can be changed by varying the fill factor of the grating. For example, and assuming a constant grating period, the grating fill factor can be increased by reducing the width of each grating element. A limitation of achieving a desired spectral bandwidth of a resonant reflector by altering the grating fill factor is that the design rules of many manufacturing processes limit the minimum width of the grating elements. Thus, to achieve some spectral bandwidths, the design rules may have to be pushed, which may reduce the manufacturing yield for the devices.
Thereafter, the front side of the first substrate 130 is bonded to the front side of the second substrate to complete the optoelectronic device. The first substrate 130 may be bonded to the second substrate using an optical epoxy 144, and preferably a non-conductive optical epoxy. The optical epoxy is preferably sufficiently thick, or has a sufficiently low refractive index relative to the refractive index of the waveguide 136 of the resonant reflector 132, so that the energy from the evanescent wave vector in the waveguide 136 is substantially prevented from entering the optoelectronic device on the first substrate. A anti-reflective coating 148 may be applied to the backside of the first substrate 130 as shown.
It is recognized that the relative position of the waveguide 136 and grating 138 may be changed. For example, and as shown in FIG. I 1, the grating may be positioned more toward the front side of the first substrate than the waveguide. Alternatively, however, the waveguide may be positioned more toward the front side of the first substrate than the grating, if desired.
It is contemplated that a number of optoelectronic devices may be formed on a common substrate, as shown in
A deep H+ ion implant, as shown at 206a-206c, may provide gain guide apertures for selected optoelectronic devices, and may further electrically isolate adjacent devices from one another. While a deep H+ implant is provided as an illustration, it is contemplated that any type of current and field confinement may be used, including for example, gain-guided, oxide-confinement, or any other means. Contacts 208a-208d may be provided on the top mirror 202 and on the bottom surface of the common substrate to provide electrical contact to each of the optoelectronic devices.
Next, a cladding or buffer layer 210 may be provided above the top mirror 202. A resonant reflector may then be provided on top of the cladding or buffer layer 210. The resonant reflector may include a waveguide 212 and a grating film 214. For some optoelectronic devices, such as top emitting devices 190, the grating film 214 may be etched to form a grating, as shown. The grating may substantially increase the reflectivity of the resonant reflector in those regions. For other optoelectronic devices, such as top receiving devices 192, the grating film may either include a different grating structure (e.g., wider spectral bandwidth), or remain non-etched as shown. This may reduce the reflectivity of the resonant reflector, thereby allowing light to more easily enter the optical cavity. For yet other optoelectronic devices, such as Metal-Semiconductor-Metal (MSM) receiving devices 194, the grating film may be removed altogether, and a metal grid 214a-214c may be formed on the waveguide layer 212 or cladding or buffer layer 210, as desired.
To isolate the resonant reflector from the optoelectronic devices, and in particular the conductive top mirror 202, the cladding or buffer layer 210 may be sufficiently thick to substantially prevent energy in the evanescent tail of the guided mode in the waveguide 212 from entering the top mirror 202. Alternatively, or in addition, the cladding or buffer layer 210 may be formed from a material that has a sufficiently low refractive index relative to the refractive index of the waveguide 212 to substantially prevent energy in the evanescent tail of the guided mode in the waveguide 212 from entering the top mirror 202.
Implementation of the described resonant reflector optoelectronic structures will permit polarization, emission wavelength and mode control. These structures and properties can be designed and fabricated using techniques such as lithography or holography, and may not be subject to growth thickness variations alone. The above techniques can be applied to produce, for example, VCSELs with high power single-mode/polarization emission from apertures exceeding a few microns in diameter. Furthermore, wavelength and/or polarization variation across a chip, array or wafer can be used for spatially varied wavelength/polarization division multiplexing, multi-wavelength spectroscopy, etc.
The GMGRF of each emitter includes a waveguide and a grating. The various gratings are shown using parallel lines in
A second optoelectronic emitter is shown at 302. Optoelectronic emitter 302 includes a grating that also extends in a horizontal direction, but has a second grating period. Thus, the second optoelectronic emitter 302 may produce light that is polarized in the same direction as the first optoelectronic emitter 300. However, the narrower grating period may produce a shorter wavelength than the first optoelectronic emitter 300.
A third optoelectronic emitter is shown at 304. Optoelectronic emitter 304 includes a grating that also extends in a horizontal direction, but has a third grating period. Thus, the third optoelectronic emitter 304 produces light that is polarized in the same direction as the first and second optoelectronic emitters. However, the larger grating period may produce a longer wavelength than the first and second optoelectronic emitters.
Finally, a fourth optoelectronic emitter is shown at 306. Optoelectronic emitter 306 includes a grating that also extends in a perpendicular direction to that of the other optoelectronic emitters 300, 302 and 304. Thus, the fourth optoelectronic emitter 306 produces light that is polarized in a direction that is perpendicular to that of the other optoelectronic emitters 300, 302 and 304.
As can readily be seen, changing the period and/or direction of the grating may allow designers to control lithographically both the operating wavelength and polarization direction of the corresponding optoelectronic emitter devices. This may allow for SDM/WDM/PDM architectures having distributed wavelength and polarization modes. If the admission of light having any polarization is desired, the GMGRF may be fabricated with two crossed gratings aligned orthogonally with each other (e.g. bi-gratings).
As indicated above, the use of a GMGRF reflector can reduce the number of top DBR mirror periods when compared to an all-epitaxial DBR VCSEL or RCPD device. Reducing the number of DBR mirror periods can reduce the overall thickness of the device, which can lead to greater amenability to integration. Increased planarity and the utilization of standard semiconductor planar batch fabrication processes may also help improve producibility. The capability to readily control the wavelength, angular and bandwidth properties of the GMGRF reflector can provide greater flexibility in the construction of multi-element integrated circuits.
As described above, the number of DBR mirror periods of the top mirror of a VCSEL or RCPD device may be reduced, preferably so that resonance cannot readily be established without the additional reflectance provided by the GMGRF. In the illustrative embodiment, and referring to
The VCSEL devices 320, 322, 324 and 326 may be processed with topside electrical contacts with the GMGRF films positioned in the emitting aperture of each VCSEL. To tune the GMGRF, and in one example, a 1 nm increase in the grating period (Λ) may yield about a 1.8 nm increase in the resonant wavelength. Thus, if the desired resonant wavelengths were 842 nm, 847 nm, 852 nm, and 857 nm, respectively, then the grating periods for the four VCSEL devices 320, 322, 324 and 326 may be approximately 477.2 nm, 480 nm, 482.8 nm, and 485.8 nm.
In order to increase the aggregate transmission bandwidth of an optical fiber, it is generally preferred that the wavelength spacing of simultaneously transmitted optical data streams, or optical data “channels,” be closely packed, to accommodate a larger number of data channels. In other words, the difference in wavelength between two adjacent channels is preferably minimized. Because the wavelength of each VCSEL can be tightly controlled lithographically, a relatively large number of optical data channels can be accommodated. In some cases, the wavelength of adjacent optical channels may be 5 nm or less. Also, and as described above, the polarization direction of the VCSEL devices can be lithographically controlled, which may allow polarization Division Multiplexing (PDM) and/or WDM and PDM multiplexing. This can even further extend the bandwidth of some optical data channels.
In the illustrative embodiment, one or more optoelectronic receivers 370, 372, 374 and 376 are provided. In one embodiment, the light transmitted by the optical fiber 362 is provided to each of the optoelectronic receivers 370, 372, 374 and 376. Each of the optoelectronic receivers 370, 372, 374 and 376 may be tuned to select the wavelength of one (or more) of the optical data channels. For example, and in one illustrative embodiment, each of the optoelectronic receives 370, 372, 374 and 376 is a RCPD device, with a GMGRF resonator that is tuned to a wavelength of a desired optical data channel. Each RCPD may be similar to the VCSEL devices 320, 322, 324 and 326 discussed above with respect to
Alternatively, or in addition, selected wavelengths may be directed to an optical receiver by an optical filter, optical splitter, or the like. In this embodiment, the optical receiver may be a wide band optical receiver, as the wavelength selectivity is provided by the optical filter, optical splitter, or the like, rather than the optical receiver itself.
In one illustrative embodiment, the GMGRF 400 includes a buffer layer 402 interposed between a core layer 404 and the top DBR mirror layer 406. The buffer layer 402 also serves as a clad layer. As indicated above, the buffer layer 402 is preferably sufficiently thick, and/or has a sufficiently low refractive index relative to the refractive index of the core layer 404 of the resonant reflector, to substantially prevent energy in the evanescent tail of the guided mode in the core layer 404 from entering an adjacent conductive layer of the optoelectronic device.
In the illustrative embodiment, an upper clad layer 410 is provided over a grating etched into the core layer 404. The grating elements 412 of the grating preferably have a grating period 414, and the core layer 404 preferably has a core depth 418 between adjacent grating elements 412. The overall core thickness at the grating elements 412 is shown at 416. In the illustrative embodiment, the core layer 404 is TiO2 with an index of refraction of about 2.41, and has a core depth of about 0.175 μm. Alternatively, it is contemplated that the core layer 404 may be, for example, GaAs or some other relatively high refractive index dielectric such as ZrO2, HfO2, or Si3N4. The thickness of the core layer 404 preferably is dependent on the refractive index difference between the core layer 404 and the buffer layer 402.
In the illustrative embodiment, the upper clad layer 410 is SiO2 with an index of refraction of about 1.48, and having a clad depth 417 of about 0.285 μm. The upper clad layer 410 extends down between the grating elements 412 of the core layer 404, as shown. Thus, the upper clad layer 410 has an overall clad layer thickness between grating elements 412 that equals the clad depth 417 plus the grating height 420, or in this case about 0.495 μm. The buffer layer 402 in the illustrative embodiment is SiO2, with an index of refraction of 1.48 and a thickness of 0.285 μm. The top layer of the DBR mirror 406 may be, for example, AlGaAs with an index of refraction of 3.2. In this embodiment, and as described above, the buffer layer 402 preferably has an increased thickness and/or a reduced index of refraction, both of which help prevent energy in the evanescent tail of the guided mode in the core layer 404 from entering the top DBR mirror 406.
The resonant wavelength of the GMGRF 400 can be set in a reliable manner by appropriately selecting GMGRF parameters, such as the grating period (Λ) 414, core depth 418 versus grating height 420, grating direction, etc. More specifically, and in one illustrative embodiment, in an array of VCSEL devices having a common epitaxial structure (bottom mirror, active region, top mirror including a GMGRF), the lasing wavelength of each VCSEL in the array can be prescribed individually by changing the GMGRF parameters that affect the resonant wavelength. Most conveniently, this can be done by changing the grating period (Λ) 414 while keeping all other parameters fixed, or by increasing the grating height 420 while maintaining a substantially constant core thickness 416 (and hence reducing the core depth 418 of the core layer 404 by a corresponding amount), while keeping the grating period (Λ) 414 fixed. However, it is contemplated that these and/or other GMGRF parameters maybe changed in any suitable manner to achieve the desired resonant wavelength for each VCSEL in the array.
The resonant wavelength of this GMGRF structure can be determined approximately by using the mode-matching condition:
β=2π/Λ Equation (1)
where Λ is the grating period 414 and β is the eigenvalue (propagation wavenumber) of the guided mode excited.
The structure may be modeled as a homogenized multilayer planar waveguide by replacing the grating layer with a homongeneous film having an effective refractive index (neff) determined by the Rytov effective medium expression, which in a first-order approximation reads:
<n>2=FF*nhi2+(1−FF)*nlo2 for TE polarization Equation (2)
OR
<n>−2=FF*nhi−2+(1−FF)*nlo2 for TM polarization Equation (3)
where FF equals the grating fill factor defined with respect to the high index material.
A desired resonant wavelength λ1 and polarization (TE or TM) are then selected. The film thicknesses are preferably chosen on the basis of out-of-band optical reflectance, throughput, and core isolation from the substrate. The grating may be modeled as its homogenized equivalent thin film, and the structure may be analyzed as a multi-layer planar waveguide. This analysis may yield the guided mode eigenvalues β for the waveguide, and one (usually the fundamental mode with largest β) is chosen. The grating period which excites this mode is then given approximately by equation (1) above. Illustrated results for the GMGRF 400 of
Regardless of the method used to choose GMGRF parameters to achieve a desired resonant wavelength, the structure can be analyzed with a grating solver to estimate more precisely the GMGRF resonant wavelength and the Fabry-Perot resonance of the combined top-mirror assembly with the rest of the VCSEL or RCPD structure. If desired, minor adjustments in the GMGRF parameters can then be made to yield a desired resonant wavelength.
It is recognized that the wavelength selectivity capability of such GMGRF filters has applicability in display applications. As the grating itself may determine the wavelength of operation, and fabrication is done lithographically, laterally-displaced wavelength dependent emitters can be formed. Such a structure may also serve as a quasi-tunable laser source. Wavelength tunable VCSELs and detectors, as described above, may also find use in spectroscopic and sensing applications.
The improved performance coupled with the capability to control polarization can also lend itself to applications in polarization-sensitive optical read/write applications. Included are various forms of CD, DVD, and holographic storage applications. Laser printing heads may also benefit. The performance advantage, and use of thinner top and/or bottom mirrors becomes even more paramount when extending VCSELs into the visible wavelengths, where typical all-epitaxial DBRs become prohibitively thick and may require twice as many layers.
Having thus described the preferred embodiments of the present invention, those of skill in the art will readily appreciate that the teachings found herein may be applied to yet other embodiments within the scope of the claims hereto attached.
This application is a continuation, and claims the benefit, of U.S. patent application Ser. No. 10/121,490, entitled RESONANT REFLECTOR FOR INCREASED WAVELENGTH AND POLARIZATION CONTROL, filed Apr. 12, 2002 now U.S. Pat. No. 6,836,501, which, in turn, is a continuation-in-part of U.S. patent application Ser. No. 09/751,422, entitled RESONANT REFLECTOR FOR USE WITH OPTOELECTRONIC DEVICES, filed Dec. 29, 2000 now U.S. Pat. No. 6,782,027. All of the aforementioned patent applications are incorporated herein in their respective entireties by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4317085 | Burnham et al. | Feb 1982 | A |
4466694 | MacDonald | Aug 1984 | A |
4660207 | Svilans | Apr 1987 | A |
4784722 | Liau et al. | Nov 1988 | A |
4885592 | Kofol et al. | Dec 1989 | A |
4901327 | Bradley | Feb 1990 | A |
4904045 | Alferness et al. | Feb 1990 | A |
4943970 | Bradley | Jul 1990 | A |
4956844 | Goodhue et al. | Sep 1990 | A |
5031187 | Orenstein et al. | Jul 1991 | A |
5052016 | Mahbobzadeh et al. | Sep 1991 | A |
5056098 | Anthony et al. | Oct 1991 | A |
5062115 | Thornton | Oct 1991 | A |
5068869 | Wang et al. | Nov 1991 | A |
5079774 | Mendez et al. | Jan 1992 | A |
5115442 | Lee et al. | May 1992 | A |
5117469 | Cheung et al. | May 1992 | A |
5140605 | Paoli et al. | Aug 1992 | A |
5157537 | Rosenblatt | Oct 1992 | A |
5158908 | Blonder et al. | Oct 1992 | A |
5216263 | Paoli | Jun 1993 | A |
5216680 | Magnusson et al. | Jun 1993 | A |
5237581 | Asada et al. | Aug 1993 | A |
5245622 | Jewell et al. | Sep 1993 | A |
5258990 | Olbright et al. | Nov 1993 | A |
5285466 | Tabatabaie | Feb 1994 | A |
5293392 | Shieh et al. | Mar 1994 | A |
5317170 | Paoli | May 1994 | A |
5317587 | Ackley et al. | May 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5331654 | Jewell et al. | Jul 1994 | A |
5337074 | Thornton | Aug 1994 | A |
5337183 | Rosenblatt et al. | Aug 1994 | A |
5349599 | Larkins | Sep 1994 | A |
5351256 | Schneider et al. | Sep 1994 | A |
5359447 | Hahn et al. | Oct 1994 | A |
5359618 | Lebby et al. | Oct 1994 | A |
5363397 | Collins et al. | Nov 1994 | A |
5373520 | Shoji et al. | Dec 1994 | A |
5386426 | Stephens | Jan 1995 | A |
5390209 | Vakhshoori | Feb 1995 | A |
5396508 | Bour et al. | Mar 1995 | A |
5404373 | Cheng | Apr 1995 | A |
5412678 | Treat et al. | May 1995 | A |
5412680 | Swirhun et al. | May 1995 | A |
5416044 | Chino et al. | May 1995 | A |
5428634 | Bryan et al. | Jun 1995 | A |
5438584 | Paoli et al. | Aug 1995 | A |
5446754 | Jewell et al. | Aug 1995 | A |
5465263 | Bour et al. | Nov 1995 | A |
5475701 | Hibbs-Brenner | Dec 1995 | A |
5497390 | Tanaka et al. | Mar 1996 | A |
5513202 | Kobayashi et al. | Apr 1996 | A |
5530715 | Shieh et al. | Jun 1996 | A |
5555255 | Kock et al. | Sep 1996 | A |
5557626 | Grodzinski et al. | Sep 1996 | A |
5561683 | Kwon | Oct 1996 | A |
5568499 | Lear | Oct 1996 | A |
5586131 | Ono et al. | Dec 1996 | A |
5590145 | Nitta | Dec 1996 | A |
5598300 | Magnusson et al. | Jan 1997 | A |
5606572 | Swirhun et al. | Feb 1997 | A |
5625729 | Brown | Apr 1997 | A |
5642376 | Olbright et al. | Jun 1997 | A |
5645462 | Banno et al. | Jul 1997 | A |
5646978 | Klem et al. | Jul 1997 | A |
5648978 | Sakata | Jul 1997 | A |
5673284 | Congdon et al. | Sep 1997 | A |
5699373 | Uchida et al. | Dec 1997 | A |
5712188 | Chu et al. | Jan 1998 | A |
5726805 | Kaushik et al. | Mar 1998 | A |
5727013 | Botez et al. | Mar 1998 | A |
5727014 | Wang et al. | Mar 1998 | A |
5774487 | Morgan | Jun 1998 | A |
5778018 | Yoshikawa et al. | Jul 1998 | A |
5784399 | Sun | Jul 1998 | A |
5818066 | Duboz | Oct 1998 | A |
5828684 | Van de Walle | Oct 1998 | A |
5835521 | Ramdani et al. | Nov 1998 | A |
5901166 | Nitta et al. | May 1999 | A |
5903590 | Hadley et al. | May 1999 | A |
5940422 | Johnson | Aug 1999 | A |
5953362 | Pamulapati et al. | Sep 1999 | A |
5978401 | Morgan | Nov 1999 | A |
5995531 | Gaw et al. | Nov 1999 | A |
6002705 | Thornton | Dec 1999 | A |
6008675 | Handa | Dec 1999 | A |
6043104 | Uchida et al. | Mar 2000 | A |
6055262 | Cox et al. | Apr 2000 | A |
6154480 | Magnusson et al. | Nov 2000 | A |
6191890 | Baets et al. | Feb 2001 | B1 |
6212312 | Grann et al. | Apr 2001 | B1 |
6782027 | Cox et al. | Aug 2004 | B2 |
6836501 | Cox et al. | Dec 2004 | B2 |
Number | Date | Country |
---|---|---|
4 240 706 | Jun 1994 | DE |
0 288 184 | Oct 1988 | EP |
0 776 076 | May 1997 | EP |
60-123084 | Jul 1985 | JP |
02-054981 | Feb 1990 | JP |
05-299779 | Nov 1993 | JP |
9857402 | Dec 1998 | WO |
Entry |
---|
Morgan, et al., “Producible Ga-AS-based MOVPE-Grown Vertical-Cavity Top-Surface Emitting Lasers with Record Performance.” Elec. Lett., vol. 31, No. 6, pp. 462-464, Mar. 16, 1995. |
Morgan, et al., “Spatial-Filtered Vertical-Cavity Top Surface-Emitting Lasers,” CLEO, 1993, pp. 138-139. |
Morgan, et al., “Vertical Cavity Surface Emitting Laser Arrays: Come of Age,” Invited Paper, SPIE, vol. 2683, 0/8194-2057-3/96, pp. 18-29. |
S.S. Wang and R. Magnusson, “Multilayer Waveguide-Grating Filters,” Appl. Opt., vol. 34, No. 14, pp. 2414-2420, 1995, May 1995. |
S.S. Wang and R. Magnusson, “Theory and Applications of Guided-Mode Resonance Filters,” Appl. Opt., vol. 32, No. 14, pp. 2606-2613, 1993. |
International Search Report, dated Sep. 17, 2003 relative to PCT Application No. PCT/US 03/11093, the foreign equivalent to the instant U.S. Appl. No. 10/121,490. |
Cox, et al., “Guided-Mode Grating Resonant Filters for VCSEL Applications,” Jan. 28, 1998, Proceedings of the SPIE, SPIE, Bellingham, VA, US , vol. 3291, pp. 70-76. |
Min Soo Park and Byung Tae Ahn, “Polarization Control of Vertical-Cavity Surface-Emitting Lasers by Elector-Optic Birefrigence,” Applied Physics Letters, vol. 76, No. 7, pp. 813-815, Feb. 14, 2000. |
Tshikazu Mukaihara, et al., “A Novel Birefringent Distributed Bragg Reflector Using a Metal/Dielectric Polarizer for Polarization Control of Surface-Emittting Lasers,” Japan J. Appl. Phys., vol. 33, Part 2, No. 2B, Feb. 15, 1994, pp. L227-L229. |
Hideaki Saitao, et al., “Controlling Polarization of Quantum-Dot Surface-Emitting Lasers by Using Structurally Anisotropic Self-Assembled Quantum Dots,” American Institute of Physics, Applied Physics Letters, 71(5), Aug. 4, 1997, pp. 590-592. |
T. Mukaihara, “Polarization Control of Vertical-Cavity Surface-Emitting Lasers by a Birefringent Metal/Semiconductor Polarizer Terminating a Distributed Bragg Reflector,” Tokyo Institute of Technology, Precision and Intelligence Laboratory, pp. 183-184. |
Guenter, et al., “Reliability of Proton-Implanted VCSELs for Data Communications,” Invited Paper, SPIE, Vo., 2683, OE LASE 96, Photonics West: Fabrication, Testing and Reliability of Semiconductors Lasers (SPIE, Bellingham, WA 1996). |
Hibbs-Brenner, et al., “Performance, Uniformity and Yield of 850nm VCSELs Deposited by MOVPE,” IEEE Photonics Technology Letters, vol. 8, No. 1, Jan. 1996, pp. 7-9. |
Hornak, et al., “Low-Temperature (10K-300K0 Characterization of MOVPE-Grown Vertical-Cavity Surface-Emitting Lasers,” Photonics Technology Letters, vol. 7, No. 10, Oct. 1995, pp. 1110-1112. |
Huffaker, et al., “Lasing Characteristics of Low Threshold Microcavity Layers Using Half-Wave Spacer Layers and Lateral Index Confinement,” Applied Physics Letters, vol. 66, No. 14, Apr. 3,1995, pp. 1723-1725. |
K. L. Lear, et al., “Selectively Oxidized Vertical Cavity Surface-Emitting Lasers with 50% Power Conversion Efficiency,” Electronic Letters, vol. 31, No. Feb. 2, 1995, pp. 208-209. |
Lehman, et al., “High Frequency Modulation Characteristics of Hybrid Dielectric/AIGaAs Mirror Singlemode VCSELs,” Electronic Letters, vol. 31, No. 15, pp. 1251-1252, Jul. 20, 1995. |
Magnusson, “Integration of Guided-Mode Resonance Filters and VCSELs,” Electo-Optics Research Center, Department of Electrical Engineering, University of Texas at Arlington, May 6, 1997. • •. |
Morgan, et al. “One Watt Vertical Cavity Surface Emitting Laser,” Electronic Letters, vol. 29, No. 2, Jan. 21, 1993, pp. 206-207. |
Schubert, “Resonant Cavity Light-Emitting Diode,” Applied Physics Letters, vol. 60, No. 8, Feb. 24, 1992, pp. 921-923. |
Y. M. Yang, et al., “Ultralow Threshold Current Vertical Cavity Surface Emitting Lasers Obtained with Selective Oxidation,” Electronic Letter, vol. 31, No. 11, Mary 25, 1995, pp. 886-888. |
Yablonovitch, et al., “Photonic Bandgap Structures,” J. Opt. Soc. Am. B., Bill-of-lading. 10, No. 2, Feb. 1993, pp. 283-295. |
Young, et al., “Enhanced Performance of Offset-Gain High Barrier Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electronic, vol. 29, No. 6, Jun. 1993, pp. 2013-20222. |
Smith, et al., Polarization-Sensitive Subwavelength Antireflection Surfaces on a Semiconductor for 975 NM, Optics Letters, vol. 21, No. 15, Aug. 1, 1996, pp. 1201-1203. |
Suning Tang, et al., “Design Limitations of Highly Parallel Free-Space Optical Interconnects Based on Arrays of Vertical Cavity Surface-Emitting Laser Diodes, Microlenses, and Photodetectors,” Journal of Lightwave Technology, vol. 12, No. 11, Nov. 1, 1994, pp. 1971-1975. |
Cox, et al., “Guided Mode Grating Resonant Filters of VCSEL Applications,” Proceedings of the SPIE, The International Society for Optical Engineering, Diffractive, and Holographic Device Technologies and Applications V, San Jose, California, vol. 3291, Jan. 28-29, 1998, pp. 70-71. |
Martinsson, et al., “Transverse Mode Selection in Large-Area Oxide-Confined Vertical-Cavity Surface-Emitting Lasers Using a Shallow Surface Relief,” IEEE Photonics Technology Letters, vol. 11, No. 12, Dec. 1999, pp. 1536-1538. |
Choquette, eel al., “Lithographically-Defined Gain Apertures Within Selectively Oxidized VCSELs,” paper CtuL6, Conference on Lasers and Electro-Optics, San Francisco, California (2000). |
Oh, et la. “Single-Mode Operation in Antiquided Vertical-Cavity Surface-Emitting Laser Using a Low-Temperature Grown AlGaAs Dielectric Aperture,” IEEE Photonics Technology Letters, 10(8), 1064-1066 (1998). |
Jewell, et al., “Surface-Emitting Microlasers for Photonic Switching and Interchip Connections,” Optical Engineering, vol. 29, No., Mar. 1990, pp. 210-214. |
G. Shtengel, et al., “High-Speed Vertical-Cavity Surface-Emitting Lasers,” Photonics Technology Letters, vol. 5, No. 12, Dec. 1993, pp. 1359-1361. |
U.S. Appl. No. 09/751,423, filed Dec. 29, 2000, entitled “Spatially Modulated . Reflector for an Optoelectronic Device.” |
Banwell, et al., “VCSE laser Transmitters for Parallel Data Links,” IEEE Journal of Quantum Electronics, vol. 29, No. 2, Feb. 1993, pp. 635-644. |
Catchmark, et al., “High Temperature CW Operation of Vertical Cavity Top Surface-Emitting Lasers,” CLEO 1993, p. 138. |
Chemla, et al., “Nonlinear Optical Properties of Semiconductor quantum Wells,” Optical Nonlinearities and Instabilities in Semiconductors, Academic Press, Inc., copyright 1988, pp. 83-120. |
Choa, et al., “High-Speed Modulation of Vertical-Cavity Surface-Emitting Lasers,” IEEE Photonics Technology Letters, vol. 3, No. 8, Aug. 1991, pp. 691-699. |
G.G. Oritz, et al., “Monolithic Integration of In0.2 GA0.8AS Vertical. Cavity Surface-Emitting Lasers with Resonance-Enhanced Quantum Well Photodetectors,” Electronics Letters, vol. 32, No. 13, Jun. 20, 1996, pp. 1205-1207. |
Graf, Rudolph, Modern Dictionary of Electronics, 6th ed., Indiana: Howard W. Sams & Company, 1984, p. 694. |
Jewell, et al., “Surface Emitting Microlasers for Photonic Switching & Intership Connections,” Optical Engineering, vol. 29, No. 3, Mar. 1990, pp. 210-214. |
Kishino, et al., “Resonant Cavity-Enhanced (RCE) Photodetectors” IEEE Journal of Quantum Electronics, vol. 27, No. 8, pp. 2025-2034. |
Kuchibhotla, et al., “Low-Voltage High Gain Resonant—Cavity Avalanche Photodiode,” IEEE Photonics Technology Letters, vol. 3, No. 4, pp. 354-356. |
Lai, et al., “Design of a Tunable GaAs/AlGaAs Multiple-Quantum-Well Resonant Cavity Photodetector,” IEEE Journal of Quantum Electronics, vol. 30, No. 1, pp. 108-114. |
Lee, et al., “Top-Surface Emitting GaAs Four-Quantum-Well Lasers Emitting at 0-85 um,” Electronics Letters, vol. 24, No. 11, May 24, 1990, pp. 710-711. |
Miller, et al., “Optical Bistability Due to Increasing Absorption,” Optics Letters, vol. 9, No. 5, May 1984, pp. 162-164. |
Morgan, et al., “200 C, 96-nm Wavelength Range, Continuous-Wave Lasing from Unbonded GaAs MOVPE-Grown Vertical Cavity Surface-Emitting Lasers,” IEEE Photonics Technology Letters, vol. 7, No. 5, May 1995, pp. 441-443. |
Jiang, et al., “High -Frequency Polarization Self-Modulation in Vertical-Cavity Surface-Emitting Lasers,” Applied Physics Letters, vol. 63, No, 63, Dec. 27, 1993, pp. 2545-2547. |
Morgan, et al., “High-Power Coherently Coupled 8x8 Vertical Cavity Surface Emitting Laser Array,” Applied Physics Letters, vol. 61, No. 10, Sep. 7,1992, pp. 1160-1162. |
Morgan, et al., Hybride Dielectric/AlGaM Mirror Spatially Filtered Vertical Cavity Top-Surface Emitting Laser, Applied Physics Letters, vol. 66, No. 10, Mar. 6,1995, pp. 1157-1559. |
Morgan, et al., “Novel Hibrid-DBR Single-Mode Controlled GaAs Top-Emitting VCSEL with Record Low Voltage,” 2 pages, date prior to Dec. 29, 2000. |
Morgan, et al., “Progress in Planarized Vertical Cavity Surface Emitting Laser Devices and Arrays,” SPIE, vol. 1562, Jul. 1991, pp. 149-159. |
Morgan, et al., “Submilliamp, Low-Resistance, Continuous-Wave, Single-Mode GaAS Planar Vertical-Cavity Surface Emitting Lasers,” Honeywell Technology Center, Jun. 6, 1995. |
Morgan, et al., “Transverse Mode Control of Vertical-Cavity Top-Surface Emitting lasers,” IEEE Photonics Technology Letters, vol. 4, No. 4, Apr. 1993, pp. 374-377. |
Morgan, et al., “Vertical-Cavity Surface-Emitting Laser Arrays,” SPIE, vol. 2398, Feb. 1995, pp. 65-93. |
Morgan, “High-Performance, Producible Vertical Cavity Lasers for Optical Interconnects,” High Speed Electronics and Systems, vol. 5, No. 4, Dec. 1994, pp. 65-95. |
Nugent, et al., “Self-Pulsations in Vertical-Cavity Surface-Emitting Lasers,”Electronic Letters, vol. 31, No. 1, Jan. 5, 1995, pp. 43-44. |
U.S. Appl. No. 09/751,422, filed Dec. 29, 2000, entitled “Resonant Reflector for Use with Optoelectronic Devices.” |
PCT International Search Report on PCT/US 01/49089, the PCT counterpart of this U.S. Patent Application, dated Oct. 1, 2002. |
Number | Date | Country | |
---|---|---|---|
20050036533 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10121490 | Apr 2002 | US |
Child | 10948870 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09751422 | Dec 2000 | US |
Child | 10121490 | US |