The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference now will be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific-details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Some portions of the detailed descriptions which follow are presented in terms of particles and quasi-particles interactions, procedures, equations, blocks, diagrams, and other symbolic representations of physical processes. These descriptions and representations are the means used by those skilled in the art of physics of condensed matter to most effectively convey the substance of their work to others skilled in the art.
As it was disclosed in the patent application #1, as shown in
q=(
0
=gμ
B
H, (Eq. 2)
M=4πgμBM, (Eq. 3)
where g is the g-factor (g≈2), and μB is the Bohr magneton.
Nonequilibrium electrons put into the upper subband with spin down (14 of
As it was disclosed in the patent application #1, the process of emitting magnons resembles the operation of the four-level laser system. More specifically, if one pumps (injects) substantially sufficient number of nonequilibrium electrons into the upper subband with spin down (14 of
It follows from the energy and momentum conservation laws that if the energy of nonequilibrium electrons, εp, measured from the bottom of the spin down subband 14 is much smaller than the exchange gap Δ16, the wave vectors q of the emitted magnons 18, lie in the interval q1≦q≦q2, where q1, 2=
In the expressions for q1, 2 small corrections of order of
q=(
As it was disclosed in the patent application #1, merging of two magnons with wave vectors q and q′ generates a photon with wave vector
{right arrow over (k)}={right arrow over (q)}+{right arrow over (q)}′ (Eq. 5)
and with frequency νk equal to
ωq+ωq′=νk=ck, (Eq. 6)
where c is the light velocity.
It follows from these conservation laws that k is much smaller than q, i.e.
{right arrow over (q)}=−{right arrow over (q)}′; ωq=ωq′. (Eq. 7)
Thus, the frequency of the generated radiation is as follows:
f
r=νk/2π=(ω0+
Let us introduce the new parameter, namely the magnetic field-induced tunability:
t
H
=∂f
r
/∂H (Eq. 9)
It follows from (Eqs. 8 and 9) that tH is as follows:
t
H
=gμ
B
/π
Thus, the field H=1 T tunes the radiation frequency of 1 THz by approximately 6%. The dependence of the frequency of the generated radiation fr on magnetic field H 30 is shown in
As an example, let us consider the THz radiation in the ferromagnetic semiconductor EuO, with the Curie temperature Tc=70 K. For EuO, with m=0.35 m0, whereas m0 is the free electron mass, (J. Shoenes and P. Wachter, Phys. Rev. B 9, 3097 (1974)), and with the gap Δ=0.6 eV (J. Lascaray, J. P. Desfours, and M. Averous, Sol. St. Com. 19, 677 (1976)), the wave vector of the excited magnons q≈q0=
In the field H=1 T (Tesla), the frequency of the generated radiation according to (Eq. 8) is equal to: fr|H=1T=0.408 THz. Thus the relative change in the frequency of the generated radiation is: [fr(H=1 T)−fr(H=0)]/fr(H=0)=16%.
Let us also introduce three more parameters. The hydrostatic pressure-induced tunability:
t
P
=∂f
r
/∂P, (Eq. 11)
the carrier concentration-induced tunability:
t
c
=∂f
r
/∂n
c, (Eq. 12)
and the electric field-induced tunability:
t
E
=∂f
r
/∂E. (Eq. 13)
The hydrostatic pressure-induced tunability tP is determined by the dependence of the stiffness D on hydrostatic pressure P. For instance, in the ferromagnetic semiconductor CdCr2 Se4, with Tc=130 K, Tc decreases with the pressure: ∂Tc/∂P=(−)0.82 K/kbar. Please, see R. P. Van Stapele, in “Ferromagnetic Materials”, vol. 3, edited by E. P. Wolfarth, North-Holland Publishing Company, 1982. The change in Tc is related to the dependence of the exchange integrals on the lattice constant. It is expected that the dependence of D on P is similar to the dependence of Tc on P. Thus, the radiated frequency fr depends on P (50 of
In a ferromagnetic semiconductor the stiffness D can also depend on the carrier concentration nc if the RKKY (Ruderman-Kittel-Kasuya-Yosida) indirect exchange contributes essentially to D. If this is the case, the carrier concentration-induced tunability tc (Eq. 12) is determined by the dependence of D on nc.
There are situations when the carrier concentration nc and, hence, the stiffness D, depends on the external electric field E. In these situations the generated frequency can be tuned by using the electric field according to (Eq. 13).
In one embodiment, the method of the present invention for tunable generation of terahertz radiation comprises (not shown): (A) providing a magnon gain medium; wherein the magnon gain medium supports generation of nonequilibrium magnons; (B) generating terahertz radiation in the magnon gain medium; and (C) tuning frequency of the terahertz radiation by causing changes in an external parameter.
The first two steps (A) and (B) are fully disclosed in the patent application #1. So, we focus our attention on the step (C): tuning frequency of the terahertz radiation by causing changes in an external parameter.
In one embodiment of the present invention, the frequency of the generated terahertz radiation changes due to dependence of energy of the nonequilibrium magnons on the value of external magnetic field. Please, see (Eq. 9), and (Eq. 10). In this embodiment of the present invention, the step (C) of tuning the frequency of the terahertz radiation by causing changes in the external parameter further comprises (not shown): (C1) applying an external magnetic field to an apparatus of the present invention (as it is disclosed in the patent application #1), and (C2) causing changes in a value of the external magnetic field. The basic configuration of the apparatus of the present invention (as it s disclosed in the patent application #1) comprises: (A) a magnon gain medium (for example, a ferromagnetic semiconductor), (B) a source of nonequilibrium electrons; and (C) a thermostat configured to maintain temperature of the magnon gain medium below a critical temperature. It is well known to a person skillful in the art how to apply an external magnetic field and how to cause the changes in value of the applied external magnetic field.
In another embodiment of the present invention, the frequency of the generated terahertz radiation changes due to dependence of stiffness of the nonequilibrium magnons on the value of external hydrostatic pressure. Please, see (Eq. 11). In this embodiment of the present invention, the step (C) of tuning the frequency of the terahertz radiation by causing changes in the external parameter further comprises: (C3) applying an external hydrostatic pressure to the apparatus of the present invention (as it is disclosed in the patent application #1); and (C4) causing changes in a value of the external hydrostatic pressure. It is well known to a person skillful in the art how to apply an external hydrostatic pressure and how to cause the changes in value of the applied external hydrostatic pressure.
In one more embodiment of the present invention, the frequency of the generated terahertz radiation changes due to dependence of stiffness of the nonequilibrium magnons on the value of external electric field. Please, see (Eq. 13). In this embodiment of the present invention, the step (C) of tuning the frequency of the terahertz radiation by causing changes in the external parameter further comprises: (C5) applying an external electric field to the apparatus of the present invention (as it is disclosed in the patent application #1); and (C6) causing changes in a value of the external electric field. It is well known to a person skillful in the art how to apply an external electric field and how to cause the changes in value of the applied external electric field.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents
This patent application is a continuation-in-part (C-I-P) of the U.S. patent application Ser. No. 11/481,197, entitled “GENERATION OF TERAHERTZ WAVES”, and filed on Jul. 3, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 11481197 | Jul 2006 | US |
Child | 11496889 | US |