This invention relates generally to the field of imaging sensors, and more particularly to an imaging sensor that can be tuned via various filters.
Multispectral imaging systems record spatial pictures of an image scene in many different spectral wavelength bands, for example, a scene image at red wavelength, green wavelength and at blue wavelength. Differences are also detected when using polarized light of different polarization angles. Differences in the observed spatial image at different wavelengths are useful for finding hidden targets, assaying agricultural conditions, and detecting other subtle features that would not be noticed in a video picture of the scene.
Briefly stated, a tunable imaging sensor includes a housing with four lenses mounted on a front side. A removable or rotatable filter plate/wheel fits inside the enclosure adjacent the lenses, with a camera plate holding four CMOS or CCD imagers fitting inside the enclosure adjacent the filter plate/wheel. The filter plate includes four filters, one for each lens, while the filter wheel includes sixteen filters which are rotated into position so that four filters are always aligned with the lenses and imagers. Rotating the filter wheel provides sixteen different filter combinations for the sensor. The images from each of the imagers are processed to form a composite image.
According to an embodiment of the invention, a tunable imaging sensor includes a housing; a lens plate attached to a front of said housing; a filter plate inside said housing adjacent said lens plate; a camera plate inside said housing adjacent said filter plate; a plurality of imagers mounted on said camera plate; a plurality of lenses mounted on said lens plate; a plurality of filters mounted on said filter plate; said lens plate, said filter plate, and said camera plate being aligned such that radiation passing through one of said lenses passes through one of said plurality of filters onto one of said imagers.
According to an embodiment of the invention, a tunable imaging sensor system includes a housing; first means for mounting a plurality of lenses in said housing; second means for mounting a plurality of filters adjacent said plurality of lenses in said housing; third means for mounting a plurality of imagers adjacent said plurality of filters in said housing; wherein said first means, said second means, and said third means are aligned such that radiation passing through one of said lenses passes through one of said plurality of filters onto one of said imagers.
Referring to
Sensor 10 includes a housing 12 which is generally rectangular in shape, with a lid 14. Lid 14 is removably fastened to housing 12 preferably by screws, but any fastener capable of repeated removals will suffice. A front of housing 12 contains four holes 18 for attaching four standard C-Mount lenses 38. An alignment hole 20 is generally centered in the front of housing 12.
Referring to
Imagers 28 are preferably CMOS cameras such as the M3 1 88A manufactured by COMedia, Ltd. in Hong Kong. The clock crystals and optics of the M3 1 88A are removed before installation into sensor 10. The M3188A is a ⅓″ B/W camera module with digital output, using Omni Vision's CMOS image sensor 0V7 120. The digital video port supplies a continuous 8-bit wide image data stream. All camera functions such as exposure, gamma, gain, and windowing, are programmable through the 12C (InterIntegrated Circuit) interface.
The first embodiment sensor is spectrally selectable by the user, simply by choosing the appropriate filters 36 for filter plate 30. Filters 36 are preferably user selectable spectral or polarization filters. CMOS imagers 28 support spectral ranges of visible to near infrared, that is, sensor 10 can be used to image spectra from 400 nm to 1000 nm. Sensor 10 can also be used to collect polarimetric data without the need of determining the sensor Mueller matrix prior to collecting polarimetric imagery. This is done by simply inserting polarizers appropriately into filter plate 30. Finally, the field of view of sensor 10 is determined by the selection of lenses 38 employed on the front of sensor 12.
Sensor 10 produces both interlaced and progressive scan RS-170 analog data. Digital data can be supplied with the appropriate selection of CMOS and/or CCD cameras (imagers). Sensor 10 also has the ability to easily establish sensor gain, manually or automatically, and select the camera operational mode.
Sensor 10 is not a common aperture imager. Therefore, due to the spatial positioning of the individual imagers 28, a registration solution at infinity produces registration errors in the near-field. This near field registration effect may be used to generate range information. A key advantage to sensor 10, besides being low-cost, lightweight, low-power, and spectrally adaptable, is the ability of CMOS imagers 28 to individually address pixels independently, making it possible for basic spectral processes to be implemented prior to digitization. A fast analog process easily competes with a digital process in terms of speed and this avoids quantization error in the analog to digital conversion for limited bit systems. Creative electronic design combines these basic functions into just about any complex process. In addition, since CMOS imagers 28 use the same semiconductor substrate as processing chips, the sensor and the processor, either analog or digital, can be implemented on a single piece of silicon.
Referring to
Camera plate 64 hosts four CMOS or CCD cameras, shown as imagers 68, in a unique configuration to enhance the sensor capability. A cutout portion 66 accommodates wires to connect imagers 68 with the processing electronics. The second embodiment maintains the benefits of its predecessor and provides greater capabilities in a small, light weight package with similar power requirements.
A shaft hole 62 in filter wheel 58 accommodates a shaft (not shown) that is preferably connected to a motor such as a DC stepper motor (not shown) which is interfaced to a computer 80 so that filter wheel 58 can be moved to align different sets of filters 60 without opening sensor 50. The initial positioning and alignment, i.e., calibration, of filter wheel 58 is preferably done at the factory, with the sets of filters chosen for whatever particular application the user has in mind. Four sets of four filter sets would available on one filter wheel 58, or a combination of full filter sets and partial filter sets. For instance, if sensor 50 is to be used in an aircraft overflying an area performing a search and rescue operation, the filter sets would include color filters chosen to obtain data optimizing finding a person in the midst of foliage, sand, dirt, and/or water. For polarization studies, a complete set of polarizing filters would use four filters, with two filters being linear filters orthogonal to each other, and with the other two filters being circularly polarized, one clockwise and the other counterclockwise. For some applications, only linearly polarized filters would be used, with the filters being polarized 45 degrees apart. The flexibility of the filter wheel supports many options.
There is significant benefit in data collected by the systems. Sensors 10 and 50 provide (1) narrow bandwidth spectral data for spectral target detection capabilities, (2) polarization data to enhance the ability to detect targets in shadows and increase the detection capabilities of man-made objects, and (3) since the apertures are not coincident, the systems provide stereographic imaging capabilities inherently determining relative distances from the collected imagery through the use of software known in the imaging art. Finally, the systems are extendable to house small LWIR (long wave infrared) microbolometer sensors to further increase sensor capabilities. The first and second embodiments also support gathering the image data necessary for multispectral imaging, such as is disclosed in U.S. Pat. No. 6,539,126 (Socolinsky et al.) issued on Mar. 25, 2003 and entitled VISUALIZATION OF LOCAL CONTRAST FOR N-DIMENSIONAL IMAGE DATA, incorporated herein by reference.
Referring to
Computer 80 also preferably includes a frame grabber 94 which captures simultaneously the outputs from the RS-170 outputs of imagers 68 at a 30 Hz rate using a 4-channel bitflow Raven™ PCI Frame Grabber, Model no. RAV-PCI-440-VNS, manufactured by BitFlow, Inc. of Woburn, Mass. The separate camera outputs form imagers 68 are essentially treated as though they are separate channels or taps from a single virtual camera, in this case, sensor 50. GUI-based software in GUI-based acquisition /display /recording software module 96, developed by the applicants, accommodates the real-time acquisition, display, and recording of the sensor 50 image data in a Microsoft Windows® environment using frame grabber 94. The data is stored in a data storage medium 98. The developed software in module 96 includes the use of Windows® software libraries, source code, and object code from the Bitflow, Inc. Software Development Kit version 3.0. The software in module 96 manipulates the images, including forming the composite image using techniques well known in the art.
The schematic of
Synchronization/communications circuit 86 also includes a communication circuit 110 which preferably uses the ADG729 chip, manufactured by Analog Devices, Norwood, Mass. The ADG729 is a CMOS analog matrix switch with a serially controlled two-wire interface. It is a dual four-channel matrix switch. ON resistance is closely matched between switches and very flat over the full signal range. This part operates equally well as a multiplexer, demultiplexer or switch array and the input signal range extends to the supplies. Each channel is controlled by one bit of the data byte, which means that these multiplexers can be used in a number of different configurations with all, any, or none of the channels on at any one time. On power up of the device, all switches will be in the OFF condition and the internal shift register will contain all zeros. All channels exhibit break before make switching action preventing momentary shorting when switching channels. For the first and second embodiments, the ADG729 chip essentially works like a switch. When the computer gives it a certain address it opens either one, two, three, or all four switches in the circuit allowing the communication to the cameras to control multiple options.
While the present invention had been described with reference to a particular preferred embodiment and the accompany drawings, it will be understood by those skilled in the art that the invention is not limited to the preferred embodiment and that various modifications and the like could be made thereto without departing from the scope of the invention as defined in the following claims.
This application claims priority from U.S. Provisional Application Ser. No. 60/463,750 filed Apr. 16, 2003 and entitled TUNABLE IMAGING SENSOR, incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5016091 | Choi | May 1991 | A |
5070407 | Wheeler et al. | Dec 1991 | A |
5387958 | Pashley | Feb 1995 | A |
5694165 | Yamazaki et al. | Dec 1997 | A |
5751429 | Wada et al. | May 1998 | A |
5982423 | Sekiguchi | Nov 1999 | A |
5986767 | Nakano et al. | Nov 1999 | A |
6611289 | Yu et al. | Aug 2003 | B1 |
6640002 | Kawada | Oct 2003 | B1 |
6643457 | Chen | Nov 2003 | B2 |
6765617 | Tangen et al. | Jul 2004 | B1 |
6833873 | Suda | Dec 2004 | B1 |
6961086 | Ichikawa | Nov 2005 | B1 |
7123298 | Schroeder et al. | Oct 2006 | B2 |
7262799 | Suda | Aug 2007 | B2 |
7417684 | Watanabe et al. | Aug 2008 | B2 |
7423684 | Notagashira | Sep 2008 | B2 |
20020030755 | Uchino | Mar 2002 | A1 |
20020044212 | Hashimoto | Apr 2002 | A1 |
20020089596 | Suda | Jul 2002 | A1 |
20020113888 | Sonoda et al. | Aug 2002 | A1 |
20030098918 | Miller | May 2003 | A1 |
20030147002 | Ray et al. | Aug 2003 | A1 |
20030193564 | Jenkins | Oct 2003 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050083431 | Tsutsumi | Apr 2005 | A1 |
20070097249 | Korenaga | May 2007 | A1 |
20070252908 | Kolehmainen | Nov 2007 | A1 |
20070291982 | Sung et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
08185088 | Jul 1996 | JP |
08223477 | Aug 1996 | JP |
2003324748 | Nov 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20040223069 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
60463750 | Apr 2003 | US |