Tunable microwave multiplexer

Information

  • Patent Grant
  • 6806791
  • Patent Number
    6,806,791
  • Date Filed
    Tuesday, February 29, 2000
    24 years ago
  • Date Issued
    Tuesday, October 19, 2004
    19 years ago
Abstract
The invention is related to the field of tunable multiplexers. It consists of a tunable microwave multiplexer comprising a plurality of channel filters coupled to a combining/dividing mechanism. The plurality of channel filters can be either dielectric loaded resonators or combline resonators, while the combining/dividing mechanism can be a common resonator. In one embodiment, the common resonator is a multiple half-wavelength coaxial resonator.
Description




FIELD OF THE INVENTION




The invention is related to the field of tunable multiplexers. More particularly, this invention relates to a tunable multiplexer which can effectively couple ceramic or metallic resonator filters with TEM resonator filters. The multiplexer provides contiguous channel spacing and wide resonant frequency band tuning.




BACKGROUND OF THE INVENTION




Multiplexers are used to combine a plurality of channels, each centered at a different frequency, into one combined signal. The same multiplexer can be used to separate a single signal carrying many frequencies or channels into the constituent channels, each channel located at its respective frequency.




In the prior art, multiplexers have been designed by connecting bandpass filters in parallel or series to combine the plurality of channels. Relatively simple decoupling techniques work to separate the constituent channels provided that the channels are separated by frequency spacings equivalent to several passbands of the individual filters. However, when the channels of the multiplexer are too close in frequency, the interaction of the nearby channels will significantly degrade the performance of the multiplexer. Simple decoupling techniques prove ineffective at frequencies this close.




When the channels of the multiplexer are contiguous, the multiplexer should be designed as an integral unit. One method of achieving this is disclosed in the paper “A Technique for the Design of a Multiplexer Having Contiguous Channels


1


,” hereby incorporated by reference. The channel filters are connected in parallel using high








1


G. L. Matthaei and L. Young, “A Technique for the Design of Multiplexer Having Contiguous Channels,”


IEEE Trans. Microwave Theory Tech


., vol. MTT-12, pp. 88-93, January 1964. impedance coupling wire. In addition, a susceptance-anulling network using a low-impedance line added at the common port results in a nearly constant total input admittance. However, it is very difficult to design and manufacture the coupling wires needed to achieve the required couplings and low imaginary impedance over all channels or frequency bands at the common port.






The paper “A Generalized Multiplexer Theory


2


,” hereby incorporated by reference, discloses the use of a common transformer to produce planar structure duplexers, star shaped combline filters and interdigital multiplexers. However, this method is limited to use with TEM resonator structures.








2


J. D. Rhodes ad R. Levy,


IEEE Trans. Microwave Theory Tech


., vol. MTT-27, pp. 111-123, February 1979.






U.S. Pat. No. 5,262,742, hereby incorporated by reference, discloses a half wavelength transmission line used as a common resonator or common transformer. The common resonator is used to couple two combline filters to a common antenna port. However, like the method disclosed in “A Generalized Multiplexer Theory,” this method is limited to use with TEM resonator structures.




SUMMARY OF THE INVENTION




Referring now to the figures, in which like numerals refer to like elements, the present invention is shown. The invention comprises a tunable microwave multiplexer. Within the multiplexer is a plurality of channel filters comprising at least one resonator for filtering microwave and RF signals. The channel filters are coupled to a combining/dividing mechanism. The combining/dividing mechanism comprises a common port and a common resonator coupled to the common port.




In another embodiment, the invention comprises a microwave communication system comprising a receiver for receiving RF and microwave signals, a transmitter for transmitting RF and microwave signals, a signal processor coupled to the receiver and transmitter for processing signals and at least one antenna coupled to the receiver and the transmitter. Either the receiver or the transmitter can comprise a tunable microwave multiplexer. The tunable microwave multiplexer comprises a plurality of channel filters comprising at least one resonator for filtering RF and microwave signals. In addition, the multiplexer contains a combining/dividing mechanism coupled to the plurality of channel filters via coupling apertures. The combining/dividing mechanism comprises a common port and a multiple half-wavelength coaxial resonator coupled to the common port. In addition, the tunable microwave multiplexer contains transmission ports coupled to the plurality of filters.




In still another embodiment, the invention comprises a method of multiplexing a plurality of microwave channel frequencies. This method includes the steps of inputting a signal comprising a plurality of frequency channels into a common resonator. In addition, the phase difference between a common port of a common resonator to each RF port of a plurality of cavity channel filters is maintained at approximately 0 or 180 degrees. Furthermore, the signal comprising a plurality of frequency channels is separated into its constituent frequency signals. Still furthermore, at least one of said plurality of frequency channels is output.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a configuration of a 4-channel tunable multiplexer, according to one embodiment of the present invention.





FIG. 2

is a configuration of a common resonator, according to one embodiment of the present invention.





FIG. 3

is a measured frequency response of a 4-channel tunable multiplexer, according to one embodiment of the present invention.





FIG. 4

is drawing of the tunable multiplexer housing, according to one embodiment of the present invention.





FIG. 5

is a circuit diagram of a 4-channel tunable multiplexer using a common resonator, according to one embodiment of the present invention.











DETAILED DESCRIPTION OF ONE EMBODIMENT OF THE INVENTION




Referring now to the figures, in which like numerals refer to like elements, the present invention is shown. The present invention consists of a tunable microwave multiplexer


1


comprising a plurality of channel filters


2


-


8


coupled to a combining/dividing mechanism. In a preferred embodiment, the plurality of channel filters


2


-


8


can be either dielectric loaded resonators or combline resonators, while the combining/dividing mechanism is preferably a common resonator


20


.




The tunable microwave multiplexer


1


can be used in a microwave communication system that both receives and transmits RF and microwave signals. The tunable microwave multiplexer can be used to both multiplex and demultiplex RF and microwave signals. An example of a microwave communication system that can be used is found in U.S. Pat. No. 4,578,815, hereby incorporated by reference.




The tunable multiplexer


1


operates in the following manner. A signal comprising a plurality of microwave signal frequencies is input at a common port


10


. The signal will pass through the common resonator


20


. A signal frequency from one of the plurality of microwave signals will couple into a filter


2


-


8


if the passband of the filter is tuned to the frequency of the microwave signal. On the other hand, if the passband of the filter is tuned to a different frequency, then the filter


2


-


8


will reject the microwave signal. In this manner, the plurality of microwave signals will be separated.




The tunable multiplexer


1


can also be used to combine signals of different frequencies. Signals of different frequencies are input via transmission ports to a channel filter


2


-


8


that will pass its respective frequency. The signals will be combined into one signal comprising these different signal frequencies in the common resonator


20


. The composite signal is then output through the common port


20


.




Multiplexer




The tunable microwave multiplexer


1


has a common port


10


into which a signal comprising a plurality of microwave signal frequencies is input. In a preferred embodiment, the common port


10


can be a single coaxial cable connector (see FIG.


1


). The common port


10


can be coupled to the common resonator


20


using a tapped-in or loop configuration.




Use of a common resonator combining/dividing structure for the multiplexer


1


can maintain the phase difference of the RF signal from the common port


10


of the common resonator


20


to each RF port of the cavity channel filters


2


-


8


at precisely 0 or 180 degrees. Thus, there is no phase difference or displacement where the channel filters


2


-


8


interface with the common resonator


20


. Therefore, no critical phasing transmission line is needed in the multiplexer


1


. As a result, microwave channel frequencies can be combined or divided efficiently over a broad bandwidth.




Half-wavelength Coaxial Resonator




In a preferred embodiment, the common resonator is a multiple half-wavelength coaxial resonator


20


(see FIG.


1


). The coaxial resonator's length is a multiple half-wavelength of the average frequency of the multiplexer


1


. Stated another way, the physical length of the coaxial resonator


20


is a multiple half-wavelength of the average frequency of the input signal comprising a plurality of microwave signal frequencies input at common port


10


. Therefore, the coaxial resonator


20


appears as a low impedance to any of the input channel frequencies.




The coaxial resonator


20


is operated at a higher order TEM mode. Thus, either the magnetic field or the electric current is a maximum at both ends of the resonator


20


. In addition, there is a quarter wavelength difference in phase between the electric and the magnetic fields. Consequently, when the magnetic field is a minimum, the electric field is a maximum and vica-versa.




An adjustment screw SC


1


(accessible from the outside of the enclosure of the coaxial resonator


20


) is used to adjust the resonant frequency of the coaxial resonator


20


(see FIG.


2


). It is positioned where the electric field is a maximum in the coaxial resonator


20


. By changing the resonant frequency of the coaxial resonator


20


, a new center frequency is selected.




In a preferred embodiment, the coaxial resonator


20


comprises an enclosure E


1


, a cavity


28


and an inner conductor C


1


(see FIG.


2


). The inner conductor C


1


is either milled into the resonator cavity


28


or affixed into the cavity


28


using the same conductive material as that used for the resonator's


20


enclosure E


1


. This ensures that the conductive material maintains good contact over temperature.




Both the magnetic and the electric fields vary periodically every half-wavelength along the half-wavelength coaxial resonator


20


. Thus, there are multiple maximum magnetic field positions distributed along the resonator


20


. Coupling apertures


60


,


62


,


64


and


66


(see FIG.


1


and

FIG. 2

) located on the enclosure wall EW


1


of the common resonator


20


, are positioned at the peaks of the magnetic field respectively. The signal input to the common port


10


is radiated through these coupling apertures


60


-


66


. In a preferred embodiment, four channel filters


2


,


4


,


6


and


8


(see

FIG. 1

) are coupled to the coupling apertures


60


through


66


of the coaxial resonator


20


respectively. This allows for efficient coupling of the channel filters to the common port


10


of the multiplexer/demultiplexer


1


and optimized compactness of the housing.




Channel Filters




In a preferred embodiment, the plurality of channel filters


2


-


8


can consist of either dielectric loaded resonators or combline resonators. In a preferred embodiment, the dielectric loaded resonators can be made from a ceramic material. In another preferred embodiment, the combline resonators can be made from a ceramic material. In still another preferred embodiment, the combline resonators can be metallic resonators.





FIG. 1

discloses a preferred embodiment of the tunable microwave multiplexer/demultiplexer


1


that contains four filters


2


,


4


,


6


and


8


, connected in parallel. In a preferred embodiment, each channel filter comprises two resonators,


32


,


34


,


36


,


38


,


40


,


42


,


44


and


46


(for a total of eight resonators) which are located in two cavities,


12


,


14


,


16


,


18


,


20


,


22


,


24


and


26


(for a total of eight cavities), respectively. For example, to filter


2


comprises resonators


32


and


34


located in cavities


12


and


14


respectively. The two resonators


32


and


34


are connected in series.




The individual resonators


32


-


46


may be regarded as filter sections. An increase in the number of resonators


32


-


46


(or filter sections) connected in series produces a steeper skirt on the passband of the respective filter


2


-


8


which results in sharper attenuation of undesired frequencies. It should be noted that while four filters


2


-


8


containing two resonators


32


-


46


are shown, any number and combination of filters and resonators may also be used in accordance with what the specification discloses.

FIG. 3

is an exemplary plot of the measured frequency response of a 4-channel tunable multiplexer


1


.




The cavities


12


-


26


are located within a housing


3


(see FIG.


1


and FIG.


4


). In a preferred embodiment, the housing


3


is made from a conductive material such as aluminum, although other metals will also work well. In addition, a common enclosure wall


5


separates the cavities


12


through


26


.

FIG. 1

shows that the two resonators


32


-


46


of each channel filter,


2


,


4


,


6


and


8


, are coupled together by apertures


50


,


52


,


54


and


56


respectively, opened on the common enclosure wall


5


between the two resonators.




In a preferred embodiment, the dielectric resonator used is disclosed in copending U.S. patent application Ser. No. 60/155,600, Tunable, Temperature Stable Dielectric Loaded Cavity Resonator and Filter, hereby incorporated by reference. In a preferred embodiment, the filters are tunable. A tuning element assembly can be used to adjust the frequency.




As stated above, the amount of coupling between the channel filters


2


-


8


and the common port


10


of the multiplexer


1


is controlled by the size and the location of the coupling apertures,


60


through


66


. Energy from the multiple half-wavelength coaxial resonator


20


is coupled through the coupling apertures


60


through


66


and into the filters (


2


,


4


,


6


and


8


respectively) via the filter resonator


32


-


44


connected to that aperture


60


-


66


, respectively. The other end of each filter not connected to the coupling apertures is connected to a transmission port. Transmission ports TX


1


through TX


4


are connected to filters


2


,


4


,


6


and


8


respectively (see FIG.


1


). In a preferred embodiment, transmission ports TX


1


through TX


4


can each be a single coaxial cable connector (see FIG.


1


). Each transmission port TX


1


-TX


4


can be used to output one of the channel frequencies separated by the tunable multiplexer


1


. In addition, it can be used as an input to receive a single channel frequency which will be combined in coaxial resonator


20


with other received channel frequencies from other transmission ports TX


1


-TX


4


and output through common port


10


.




Circuit Diagram





FIG. 5

is a circuit diagram of a 4-channel tunable multiplexer


1


, according to one embodiment of the present invention. Electrical circuit


100


illustrates schematically the circuit formed by the half-wavelength common resonator


20


and four channel filters


2


-


8


of FIG.


1


. Transformer M_com represents common port


10


. Transformers M


01


_


1


through M


01


_


4


represent the coupling apertures


60


-


66


located on the enclosure walls E


1


of the common resonator


20


. Transformers M


12


_


1


through M


12


_


4


represent apertures


50


-


56


opened on the common enclosure wall between the two resonators through which the two resonators of each channel filter


2


-


8


are coupled together, respectively. Transformers M


23


_


1


to M


23


_


4


represent transmitting ports TX


1


through TX


4


, respectively.




Parallel RC circuits R_com and C_com represent the equivalent electrical circuit for the common resonator


20


. Parallel RC circuits R


1


_


1


and C


1


_


1


through R


2


_


4


and C


2


_


4


represent the equivalent electrical circuits for resonators


32


through


46


. Each resonator is tuned to resonate at the frequency meant to be passed by its associated filter. Therefore, it will have a minimum impedance at that frequency. Both contiguous and noncontiguous channel filters


2


-


8


can be multiplexed/demultiplexed by adjusting the common resonator


20


and channel filter frequencies respectively.




While the invention has been disclosed in this patent application by reference to the details of preferred embodiments of the invention, it is to be understood that the disclosure is intended in an illustrative, rather than a limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims and their equivalents.



Claims
  • 1. A tunable microwave multiplexer, comprising:a plurality of channel filters comprising at least one resonator; and a combining/dividing mechanism coupled to said plurality of channel filters comprising: a common port; and a multiple half-wavelength common resonator coupled to said common port.
  • 2. The tunable microwave multiplexer according to claim 1, wherein said at least one resonator is a combline resonator.
  • 3. The tunable microwave multiplexer according to claim 1, wherein said at least one resonator is a dielectric loaded resonator.
  • 4. The tunable microwave multiplexer according to claim 1, wherein said at least one resonator is a ceramic resonator.
  • 5. The tunable microwave multiplexer according to claim 1, wherein said at least one resonator is a metallic resonator.
  • 6. The tunable microwave multiplexer according to claim 1, further comprising transmission ports coupled to said plurality of filters.
  • 7. The tunable microwave multiplexer according to claim 1, wherein at least one of said plurality of said channel filters comprises more than one filter section.
  • 8. The tunable microwave multiplexer according to claim 7, wherein said more than one filter section is connected in series with at least one other filter section.
  • 9. The tunable microwave multiplexer according to claim 1, wherein said at least one resonator comprises a tuning element assembly, whereby a resonant frequency can be adjusted.
  • 10. The tunable microwave multiplexer according to claim 1, wherein said common resonator is a coaxial resonator.
  • 11. The tunable microwave multiplexer according to claim 1, wherein said common port is coupled to said common resonator using a tapped-in or loop configuration.
  • 12. The tunable microwave multiplexer according to claim 1, wherein said common resonator further comprises coupling apertures, wherein said plurality of channel filters is coupled to said plurality of coupling apertures.
  • 13. The tunable microwave multiplexer according to claim 12, wherein said coupling apertures are positioned at peaks of a magnetic field.
  • 14. The tunable microwave multiplexer according to claim 1, wherein said common resonator comprises an adjustment screw, whereby said adjustment screw is used to adjust the resonant frequency of said common resonator.
  • 15. The tunable microwave multiplexer according to claim 14, wherein said adjustment screw is positioned where the electric field is a maximum in said common resonator.
  • 16. The tunable microwave multiplexer according to claim 1, wherein said common resonator comprises:an enclosure; a cavity positioned inside said enclosure; and an inner conductor positioned in said cavity.
  • 17. The tunable microwave multiplexer according to claim 16, wherein said inner conductor is milled into said cavity.
  • 18. The tunable microwave multiplexer according to claim 16, wherein said inner conductor is affixed into said cavity.
  • 19. The tunable microwave multiplexer according to claim 16, wherein said inner conductor is made using the same conductive material as that used for the common resonator's enclosure.
  • 20. The tunable microwave multiplexer according to claim 1, wherein said more than one resonator is connected in series with at least one other resonator.
  • 21. A tunable microwave multiplexer, comprising:a plurality of channel filters comprising at least one resonator; and a combining/dividing mechanism coupled to said plurality of channel filters via coupling apertures, comprising: a common port, and a multiple half-wavelength coaxial resonator coupled to said common port; and transmission ports coupled to said plurality of filters.
  • 22. The tunable microwave multiplexer according to claim 21, wherein said coupling apertures located on said enclosure wall of said common resonator are positioned at peaks of a magnetic field.
  • 23. The tunable microwave multiplexer according to claim 21, wherein said common port is coupled to said common resonator using a tapped-in or loop configuration.
  • 24. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator is a combline resonator.
  • 25. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator is a dielectric loaded resonator.
  • 26. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator is a ceramic resonator.
  • 27. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator is a metallic resonator.
  • 28. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator comprises a tuning element assembly, whereby a resonant frequency can be adjusted.
  • 29. The tunable microwave multiplexer according to claim 21, wherein said multiple half-wavelength coaxial resonator comprises: an enclosure;a cavity positioned inside said enclosure; and an inner conductor positioned in said cavity.
  • 30. The tunable microwave multiplexer according to claim 21, wherein said at least one resonator is connected in series with at least one other resonator.
  • 31. The tunable microwave multiplexer according to claim 21, wherein said inner conductor is milled into said cavity.
  • 32. The tunable microwave multiplexer according to claim 21, wherein said inner conductor is affixed into said cavity.
  • 33. The tunable microwave multiplexer according to claim 21, wherein said multiple half-wavelength coaxial resonator comprises an adjustment screw, whereby said adjustment screw is used to adjust the resonant frequency of said multiple half-wavelength coaxial resonator, wherein said adjustment screw is positioned where the electric field is a maximum in said common resonator.
  • 34. A microwave communication system, comprising: a receiver;a signal processor coupled to said receiver; and at least one antenna coupled to said receiver; wherein said receiver comprises at least one tunable microwave multiplexer, comprising: a plurality of channel filters comprising at least one resonator; and a combining/dividing mechanism coupled to said plurality of channel, comprising: a common port, and a multiple half-wavelength coaxial resonator coupled to said common port; and transmission ports coupled to said plurality of filters.
  • 35. The tunable microwave multiplexer according to claim 34, further comprising coupling apertures coupling said combining/dividing mechanism andsaid plurality of channel filters, wherein said coupling apertures are located on said enclosure wall of said common resonator, positioned at peaks of a magnetic field.
  • 36. The tunable microwave multiplexer according to claim 34, wherein said common port is coupled to said common resonator using a tapped-in or loop configuration.
  • 37. The tunable microwave multiplexer according to claim 34, wherein said at least one resonator comprises a tuning element assembly, whereby a resonant frequency can be adjusted.
  • 38. The tunable microwave multiplexer according to claim 34, wherein said multiple half-wavelength coaxial resonator comprises: an enclosure;a cavity positioned inside said enclosure; and an inner conductor positioned in said cavity.
  • 39. The tunable microwave multiplexer according to claim 34, wherein said at least one resonator is connector series with at least one other resonator.
  • 40. The tunable microwave multiplexer according to claim 34, wherein said multiple half-wavelength coaxial resonator comprises an adjustment screw, whereby said adjustment screw is used to adjust the resonant frequency of said common resonator, wherein said adjustment screw is positioned where the electric field is a maximum in said common resonator.
  • 41. A microwave communication system, comprising: a transmitter;a signal processor coupled to said transmitter; and at least one antenna coupled to said transmitter; wherein said transmitter comprises at least one tunable microwave multiplexer, comprising: a plurality of channel filters comprising at least one resonator; and a combining/dividing mechanism coupled to said plurality of channel filters, comprising: a common port, and a multiple half-wavelength coaxial resonator coupled to said common port; and transmission ports coupled to said plurality of filters.
  • 42. The tunable microwave multiplexer according to claim 41, further comprising coupling apertures for coupling said combining/dividing mechanism and said plurality of channel filters, wherein said coupling apertures are located on said enclosure wall of said common resonator, positioned at peaks of a magnetic field.
  • 43. The tunable microwave multiplexer according to claim 41, wherein said common port is coupled to said common resonator using a tapped-in or loop configuration.
  • 44. The tunable microwave multiplexer according to claim 41, wherein said at least one resonator comprises a tuning element assembly, whereby a resonant frequency can be adjusted.
  • 45. The tunable microwave multiplexer according to claim 41, wherein said multiple half-wavelength coaxial resonator comprises: an enclosure;a cavity positioned inside said enclosure; and an inner conductor positioned in said cavity.
  • 46. The tunable microwave multiplexer according to claim 41, wherein said at least one resonator is connected in series with at least one other resonator.
  • 47. The tunable microwave multiplexer according to claim 41, wherein said multiple half-wavelength coaxial resonator comprises an adjustment screw, whereby said adjustment screw is used to adjust the resonant frequency of said common resonator, wherein said adjustment screw is positioned where the electric field is a maximum in said common resonator.
  • 48. A method of multiplexing a plurality microwave channel frequencies, comprising:inputting a signal comprising a plurality of frequency channels into a common resonator; maintaining the phase difference between a common port of a common resonator to each RF port of a plurality of cavity channel filters at approximately 0 or 180 degrees; separating said signal comprising a plurality of frequency channels; and outputting at least one of said plurality of frequency channels.
  • 49. The method of multiplexing microwave channel frequencies according to claim 48, wherein said step of separating said signal, comprises:coupling said signal comprising a plurality of frequency channels at peaks of a magnetic field within said common resonator to a plurality of channel filters; and filtering the frequency channels of said signal using said plurality of channel filters.
  • 50. The method of multiplexing channel frequencies according to claim 48, further comprising the step of adjusting the resonant frequency of said common resonator.
  • 51. The method of multiplexing channel frequencies according to claim 48, further comprising the step of adjusting the resonant frequency of one of said plurality of frequency channels.
  • 52. The method of multiplexing channel frequencies according to claim 48, wherein said common resonator is a multiple half-wave coaxial resonator.
US Referenced Citations (26)
Number Name Date Kind
4091344 LaTourrette May 1978 A
4241322 Johnson et al. Dec 1980 A
4450421 Meguro et al. May 1984 A
4567454 Saito Jan 1986 A
4777459 Hudspeth Oct 1988 A
4799033 Igarashi et al. Jan 1989 A
4862122 Blair et al. Aug 1989 A
5130683 Agahi-Kesheh Jul 1992 A
5229729 Nishikawa et al. Jul 1993 A
5329687 Scott et al. Jul 1994 A
5373270 Blair et al. Dec 1994 A
5412359 Kazama et al. May 1995 A
5418509 Piirainen May 1995 A
5428322 Hendrick et al. Jun 1995 A
5428325 Jachowski et al. Jun 1995 A
5684438 D'Oro Nov 1997 A
5804534 Zaki Sep 1998 A
5841330 Wenzel et al. Nov 1998 A
5894250 Ravaska et al. Apr 1999 A
5936490 Hershtig Aug 1999 A
5949309 Correa Sep 1999 A
5990767 Ivanov et al. Nov 1999 A
5991607 Burdenski et al. Nov 1999 A
6215376 Hagstrom et al. Apr 2001 B1
6392506 Wulff May 2002 B2
6600394 Wang et al. Jul 2003 B1
Non-Patent Literature Citations (2)
Entry
61/169191.*
60/155600.