This relates generally to electronic devices, and, more particularly, to antennas in electronic devices.
Electronic devices such as portable computers and handheld electronic devices are often provided with wireless communications capabilities. For example, electronic devices may have wireless communications circuitry to communicate using cellular telephone bands and to support communications with satellite navigation systems and wireless local area networks.
It can be difficult to incorporate antennas and other electrical components successfully into an electronic device. Some electronic devices are manufactured with small form factors, so space for components is limited. In many electronic devices, the presence of conductive structures can influence the performance of electronic components, further restricting potential mounting arrangements for components such as antennas.
It would therefore be desirable to be able to provide improved electronic device antennas.
An electronic device may have an antenna. Antenna structures for the antenna may be formed from patterned metal structures on a dielectric carrier. The dielectric carrier may be a plastic carrier having a shape with sides that create a three-dimensional layout for the antenna structures.
The antenna may be configured to provide coverage in wireless communications bands such as a low frequency communications band and a high frequency communications band. The antenna may have an antenna ground formed from structures such as conductive electronic device housing structures and an antenna resonating element such as an inverted-F antenna resonating element formed from the patterned metal structures on the plastic carrier.
The antenna resonating element may have a high band arm that contributes to a first high band resonance in the high band and may have a low band arm that gives rise to a low band resonance in the low band. A passive filter that is coupled between first and second portions of the low band arm in the antenna resonating element may be configured to exhibit a short circuit impedance at frequencies associated with a second high band resonance in the high band. The short circuit forms a bypass path that shorts together the first and second portions at frequencies in the second high band resonance. In this configuration, the first and second portions of the antenna resonating element form an antenna structure that contributes to the second high band resonance in the high band.
The low band resonance may be tuned using a tunable component. The tunable component may be a tunable inductor that is actively tuned during operation of the antenna and electronic device. The tunable inductor may be coupled between the second portion of the antenna resonating element and the antenna ground. Adjustments to the tunable inductor may be used to tune the low band resonance so that the entire low band is covered by the antenna.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
Electronic devices may be provided with antennas, and other electronic components. An illustrative electronic device in which electronic components such as antenna structures may be used is shown in
Housing 12 may be formed from conductive materials such as metal (e.g., aluminum, stainless steel, etc.), carbon-fiber composite material or other fiber-based composites, glass, ceramic, plastic, or other materials. A radio-frequency-transparent window such as window 58 may be formed in housing 12 (e.g., in a configuration in which the rest of housing 12 is formed from conductive structures). Window 58 may be formed from plastic, glass, ceramic, or other dielectric material. Antenna structures, and, if desired, proximity sensor structures for use in determining whether external objects are present in the vicinity of the antenna structures may be formed in the vicinity of window 58. If desired, antenna structures and proximity sensor structures may be mounted behind a dielectric portion of housing 12 (e.g., in a configuration in which housing 12 is formed from plastic or other dielectric material).
Device 10 may have user input-output devices such as button 59. Display 50 may be a touch screen display that is used in gathering user touch input. The surface of display 50 may be covered using a display cover layer such as a planar cover glass member or a clear layer of plastic.
The central portion of display 50 (shown as region 56 in
An opaque masking layer such as opaque ink or plastic may be placed on the underside of display 50 in peripheral region 54 (e.g., on the underside of the cover glass). This layer may be transparent to radio-frequency signals. The conductive touch sensor electrodes and display pixel structures and other conductive structures in region 56 tend to block radio-frequency signals. However, radio-frequency signals may pass through the display cover layer (e.g., through a cover glass layer) and opaque masking layer in inactive display region 54 (as an example). Radio-frequency signals may also pass through antenna window 58 or dielectric housing walls in a housing formed from dielectric material. Lower-frequency electromagnetic fields may also pass through window 58 or other dielectric housing structures, so capacitance measurements for a proximity sensor may be made through antenna window 58 or other dielectric housing structures, if desired.
With one suitable arrangement, housing 12 may be formed from a metal such as aluminum. Portions of housing 12 in the vicinity of antenna window 58 may be used as antenna ground. Antenna window 58 may be formed from a dielectric material such as polycarbonate (PC), acrylonitrile butadiene styrene (ABS), a PC/ABS blend, or other plastics (as examples). Window 58 may be attached to housing 12 using adhesive, fasteners, or other suitable attachment mechanisms. To ensure that device 10 has an attractive appearance, it may be desirable to form window 58 so that the exterior surfaces of window 58 conform to the edge profile exhibited by housing 12 in other portions of device 10. For example, if housing 12 has straight edges 12A and a flat bottom surface, window 58 may be formed with a right-angle bend and vertical sidewalls. If housing 12 has curved edges 12A, window 58 may have a similarly curved exterior surface along the edge of device 10.
A schematic diagram of an illustrative configuration that may be used for electronic device 10 is shown in
Control circuitry 29 may be used to run software on device 10, such as operating system software and application software. Using this software, control circuitry 29 may, for example, transmit and receive wireless data, tune antennas to cover communications bands of interest, and perform other functions related to the operation of device 10.
Input-output devices 30 may be used to allow data to be supplied to device 10 and to allow data to be provided from device 10 to external devices. Input-output circuitry 30 may include communications circuitry such as wired communications circuitry. Device 10 may also use wireless circuitry such as transceiver circuitry 206 and antenna structures 204 to communicate over one or more wireless communications bands.
Input-output devices 30 may also include input-output components with which a user can control the operation of device 10. A user may, for example, supply commands through input-output devices 30 and may receive status information and other output from device 10 using the output resources of input-output devices 30.
Input-output devices 30 may include sensors and status indicators such as an ambient light sensor, a proximity sensor, a temperature sensor, a pressure sensor, a magnetic sensor, an accelerometer, and light-emitting diodes and other components for gathering information about the environment in which device 10 is operating and providing information to a user of device 10 about the status of device 10. Audio components in devices 30 may include speakers and tone generators for presenting sound to a user of device 10 and microphones for gathering user audio input. Devices 30 may include one or more displays such as display 50 of
Wireless communications circuitry 34 may include radio-frequency (RF) transceiver circuitry such as transceiver circuitry 206 that is formed from one or more integrated circuits, power amplifier circuitry, low-noise input amplifiers, passive RF components, one or more antennas such as antenna structures 204, and other circuitry for handling RF wireless signals. Wireless signals can also be sent using light (e.g., using infrared communications).
Wireless communications circuitry 34 may include radio-frequency transceiver circuits for handling multiple radio-frequency communications bands. For example, circuitry 34 may include transceiver circuitry 206 for handling cellular telephone communications, wireless local area network signals, and satellite navigation system signals such as signals at 1575 MHz from satellites associated with the Global Positioning System. Transceiver circuitry 206 may handle 2.4 GHz and 5 GHz bands for WiFi® (IEEE 802.11) communications or other wireless local area network communications and may handle the 2.4 GHz Bluetooth® communications band. Circuitry 206 may use cellular telephone transceiver circuitry 38 for handling wireless communications in cellular telephone bands such as the bands in the range of 700 MHz to 2.7 GHz (as examples).
Wireless communications circuitry 34 can include circuitry for other short-range and long-range wireless links if desired. For example, wireless communications circuitry 34 may include wireless circuitry for receiving radio and television signals, paging circuits, etc. In WiFi® and Bluetooth® links and other short-range wireless links, wireless signals are typically used to convey data over tens or hundreds of feet. In cellular telephone links and other long-range links, wireless signals are typically used to convey data over thousands of feet or miles. Wireless communications circuitry 34 may also include circuitry for handing near field communications.
Wireless communications circuitry 34 may include antenna structures 204. Antenna structures 204 may include one or more antennas. Antenna structures 204 may include inverted-F antennas, patch antennas, loop antennas, monopoles, dipoles, single-band antennas, dual-band antennas, antennas that cover more than two bands, or other suitable antennas. Configurations in which at least one antenna in device 10 is formed from an inverted-F antenna structure such as a dual band inverted-F antenna are sometimes described herein as an example.
To provide antenna structures 204 with the ability to cover communications frequencies of interest, antenna structures 204 may be provided with circuitry such as filter circuitry (e.g., one or more passive filters and/or one or more tunable filter circuits). Discrete components such as capacitors, inductors, and resistors may be incorporated into the filter circuitry. Capacitive structures, inductive structures, and resistive structures may also be formed from patterned metal structures (e.g., part of an antenna).
If desired, antenna structures 204 may be provided with adjustable circuits such as tunable circuitry 208. Tunable circuitry 208 may be controlled by control signals from control circuitry 29. For example, control circuitry 29 may supply control signals to tunable circuitry 208 via control path 210 during operation of device 10 whenever it is desired to tune antenna structures 204 to cover a desired communications band. Path 222 may be used to convey data between control circuitry 29 and wireless communications circuitry 34 (e.g., when transmitting wireless data or when receiving and processing wireless data).
Passive filter circuitry in antenna structures 204 may help antenna structures 204 exhibit antenna resonances in communications bands of interest (e.g., passive filter circuitry in antenna structures 204 may short together different portions of antenna structures 204 and/or may form open circuits or pathways of other impedances between different portions of antenna structures 204 to ensure that desired antenna resonances are produced).
Transceiver circuitry 206 may be coupled to antenna structures 204 by signal paths such as signal path 212. Signal path 212 may include one or more transmission lines. As an example, signal path 212 of
Transmission line 212 may be coupled to antenna feed structures associated with antenna structures 204. As an example, antenna structures 204 may form an inverted-F antenna having an antenna feed with a positive antenna feed terminal such as terminal 218 and a ground antenna feed terminal such as ground antenna feed terminal 220. Positive transmission line conductor 214 may be coupled to positive antenna feed terminal 218 and ground transmission line conductor 216 may be coupled to ground antenna feed terminal 220. Other types of antenna feed arrangements may be used if desired. The illustrative feeding configuration of
Tunable circuitry 208 may be formed from one or more tunable circuits such as circuits based on capacitors, resistors, inductors, and switches. Tunable circuitry 208 may be implemented using discrete components mounted to a printed circuit such as a rigid printed circuit board (e.g., a printed circuit board formed from glass-filled epoxy) or a flexible printed circuit formed from a sheet of polyimide or a layer of other flexible polymer, a plastic carrier, a glass carrier, a ceramic carrier, or other dielectric substrate. As an example, tunable circuitry 208 may be coupled to a dielectric carrier of the type that may be used in supporting antenna resonating element traces for antenna structures 204 (
As shown
As shown in
Tunable components 208 may, if desired, use bypassable components. As shown in
Variable components such as varactors, variable inductors, and variable resistors may be used in tunable circuitry 208 to provide continuously adjustable component values.
Switches in tunable circuitry 208 may be based on diodes, transistors, microelectromechanical systems (MEMS) devices, or other switching circuitry.
As shown in
Antenna 204 has main resonating element structure 254. Main resonating element structure 254 may be formed from an elongated conductive structure (e.g., a strip of metal). Antenna feed path 256 and short circuit path SC may be coupled in parallel between main resonating element structures 254 and ground 250.
Main resonating element structure 254 may have multiple arms. For example, structure 254 may have high band arm HB-1. High band arm HB-1 may be associated with a first high band resonance contribution to a high-frequency communications band. Structure 254 may also have low band arm LB for supporting an antenna resonance at a lower frequency than the first high band resonance frequency (i.e., in a low frequency band LB).
Main resonating element structure 254 (i.e., low band arm LB) may have a bend such as bend 262. The bent portion of main resonating element 252 couples portion 254 to tip portion 264, so that tip portion 264 of resonating element 252 runs parallel to main resonating element portion 254 of resonating element 252. Tip segment 264 may lie between main portion (segment) 254 and antenna ground 250.
Tunable element 208 may be coupled between tip segment 264 of antenna resonating element 252 and antenna ground 250. During operation of antenna 204, tunable element 208 may be adjusted to switch inductor L1 (having a first inductance value) or inductor L2 (having a second inductance value) into use. By adjusting whether inductor L1 or inductor L2 couples antenna segment 264 to antenna ground 250 or whether both inductors L1 and L2 are switched out of use so that an infinite impedance (open circuit) is formed by tunable element 208 so that segment 264 is isolated from ground 250, control circuitry 29 can adjust low band performance for antenna 204 (e.g., control circuitry 29 can make adjustments to tunable element 208 to tune a low band antenna resonance for antenna 204).
The main segment of antenna resonating element 252 may be coupled to folded tip segment 264 of antenna resonating element 252 using filter circuitry F. Filter F may include components such as inductor 258 and capacitor 260. The components of filter F such as inductor 258 and capacitor 260 may form a resonant circuit having a relatively low impedance (i.e., a short circuit impedance) at frequencies associated with a second high band resonance HB-2 in a high band HB and having a relatively high impedance (open circuit impedance) at other frequencies such as those associated with operation in low band LB.
At high band operating frequencies, filter F may form a short circuit that shorts main portion (segment) 254 of antenna resonating element 252 to tip portion 264 of antenna resonating element 252, thereby allowing currents in antenna 204 to flow within high band path HB-2 of resonating element 252, bypassing the rest of low band arm LB near bend 262. Filter F therefore allows path 268 to serve as a bypass path in antenna resonating element 252 at high frequencies HB-2. At low frequencies associated with operation of antenna 204 in low band LB, currents in antenna 204 may flow within low band arm LB without passing through bypass path 268.
The configuration of
A low band resonance, which is tuned by adjustment of the inductance between resonating element 252 and antenna ground 250, may be associated with low band path 252.
Coverage for high band HB may be achieved using passive filter circuitry to form multiple antenna resonating element paths within antenna 204. For example, resonance 276 may be formed using high band arm HB-1 and resonance 278 may be formed using high band bypass path HB-2 in low band path LB. Coverage across all of low band LB may be achieved by adjusting the inductance of tunable inductor 208 to tune the low band resonance of antenna 204. Antenna 204 may, for example, exhibit antenna resonance 270 when inductor 208 is placed in a first state in which inductors L1 and L2 are switched out of use by switching circuitry 266 of tunable inductor 208. In this first state for tunable inductor 208, tunable inductor 208 may form an open circuit (i.e., the inductance of inductor 208 may effectively be infinite). Antenna 204 may exhibit antenna resonance 272 when inductor 208 is placed in a second state in which inductor L1 is switched into use and may exhibit antenna resonance 274 when inductor 208 is placed in a third state in which inductor 208 is placed in a third state in which inductor L2 is switched into use.
With the arrangement of
A cross-sectional view of device 10 taken along line 1300 of
The antenna resonating element formed from structures 204 may be based on any suitable antenna resonating element design (e.g., structures 204 may form a patch antenna resonating element, a single arm inverted-F antenna structure, a dual-arm inverted-F antenna structure, other suitable multi-arm or single arm inverted-F antenna structures, a closed and/or open slot antenna structure, a loop antenna structure, a monopole, a dipole, a planar inverted-F antenna structure, a hybrid of any two or more of these designs, etc.). Housing 12 may serve as antenna ground for an antenna formed from structure 204 and/or other conductive structures within device 10 and antenna structures 204 may serve as ground (e.g., conductive components, traces on printed circuits, etc.).
Structures 204 may include patterned conductive structures such as patterned metal structures. The patterned conductive structures may, if desired, be supported by a dielectric carrier. The conductive structures may be formed from a coating, from metal traces on a flexible printed circuit, or from metal traces formed on a plastic carrier using laser-processing techniques or other patterning techniques. Structures 204 may also be formed from stamped metal foil or other metal structures. In configurations for antenna structures 204 that include a dielectric carrier, metal layers may be formed directly on the surface of the dielectric carrier and/or a flexible printed circuit that includes patterned metal traces may be attached to the surface of the dielectric carrier. If desired, conductive material in structures 204 may also form one or more proximity sensor capacitor electrodes.
During operation of the antenna formed from structures 204, radio-frequency antenna signals can be conveyed through dielectric window 58. Radio-frequency antenna signals associated with structures 204 may also be conveyed through a display cover member such as cover layer 60. Display cover layer 60 may be formed from one or more clear layers of glass, plastic, or other materials. Display 50 may have an active region such as region 56 in which cover layer 60 has underlying conductive structure such as display panel module 64. The structures in display panel 64 such as touch sensor electrodes and active display pixel circuitry may be conductive and may therefore attenuate radio-frequency signals. In region 54, however, display 50 may be inactive (i.e., panel 64 may be absent). An opaque masking layer such as plastic or ink 62 may be formed on the underside of transparent cover glass 60 in region 54 to block antenna structures 204 from view by a user of device 10. Opaque material 62 and the dielectric material of cover layer 60 in region 54 may be sufficiently transparent to radio-frequency signals that radio-frequency signals can be conveyed through these structures during operation of device 10.
Device 10 may include one or more internal electrical components such as components 23. Components 23 may include storage and processing circuitry such as microprocessors, digital signal processors, application specific integrated circuits, memory chips, and other control circuitry such as control circuitry 29 of
Dielectric carrier 282 may be formed from a dielectric material such as glass, ceramic, or plastic. As an example, dielectric carrier 282 may be formed from plastic parts that are molded and/or machined into a desired shape such as the illustrative rectangular prism shape (rectangular box shape) of
As shown in the
To provide antenna structures 204 with the ability to be tuned to cover different desired communications bands during use, antenna structures 204 may be provided with passive filter circuitry F and active tunable circuitry 208. As an example, terminal 228 of tunable circuitry 208 may be coupled to a portion of conductive structures 280 and terminal 230 of tunable circuitry 208 may be coupled to antenna ground 250. In general, the locations at which terminals 228 and 230 are coupled to antenna 204 may be positioned at any points on metal structures 280 that provide a desired amount of antenna response tuning. The illustrative coupling locations for terminals 228 and 230 are merely illustrative.
If desired, dielectric carrier 282 may be formed from a structure that contains one or more cavities (i.e., dielectric carrier 282 may be hollow). Cavities in carrier 282 may be filled with air, porous material with a low dielectric constant, foam, or other materials. Dielectric carrier 282 may have a body that is covered with a lid or other configurations.
Conductive structures 280 may be formed from patterned metal traces formed directly on the surface of dielectric carrier 282. The pattern of metal used in forming structures 280 may be created by photolithographic patterning, using laser direct structuring (LDS) techniques in which applied laser light (or other activation mechanism) is used to selectively activate desired surface regions on a plastic carrier that are subsequently electroplated or otherwise coated with metal to form patterned metal structures 280, or molded interconnect device (MID) techniques in which multiple shots of plastic (some metal-attracting and some metal-repelling) are used to create desired metal patterns 280 following electroplating or other metal coating operations.
If desired, a flexible printed circuit may be provided with metal traces such as metal traces 280. Adhesive, solder, welds, screws, or other fastening arrangements may be used to attach flexible printed circuit to dielectric carrier 282.
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
This application is a continuation of U.S. patent application Ser. No. 13/864,968, filed Apr. 17, 2013. This application claims the benefit of and claims priority to U.S. patent application Ser. No. 13/864,968, filed Apr. 17, 2013, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13864968 | Apr 2013 | US |
Child | 15264500 | US |