TUNABLE NARROW BAND FILTER

Information

  • Patent Application
  • 20080025445
  • Publication Number
    20080025445
  • Date Filed
    July 31, 2006
    19 years ago
  • Date Published
    January 31, 2008
    17 years ago
Abstract
A tunable narrow band radio frequency (RF) filter (200) includes an RF input (225), an RF output (227), a capacitive network (201-209) for coupling the RF input (225) with the RF output (227) and an inductive network (219-223) for resonating the filter at a predetermined center frequency. A number of semiconductor devices such as varactor diodes (215, 217, 229, 233) are used for tuning respective capacitors in the capacitive network (201-209). A single voltage source (Vc) is used for tuning each one of the respective varactor diodes for moving the resonant frequency of the filter over a substantially wide frequency range.
Description

BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.



FIG. 1 is schematic diagram of a prior art filter circuit.



FIG. 2 is a graph illustrating return loss (RTL) versus operating frequency of the filter circuit shown in FIG. 1.



FIG. 3 is a schematic diagram of a narrow band filter circuit tunable over a substantially wide range of frequencies in accordance with an embodiment of the invention.



FIG. 4 is a graph illustrating return loss (RTL) versus operating frequency of the filter circuit shown in FIG. 3.





Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


DETAILED DESCRIPTION

Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to a tunable narrow band filter. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.


It will be appreciated that embodiments of the invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a tunable narrow band filter described herein. The non-processor circuits may include, but are not limited to, a radio receiver, a radio transmitter, signal drivers, clock circuits, power source circuits, and user input devices. As such, these functions may be interpreted as steps of a method to perform a tunable narrow band filter. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.



FIG. 3 illustrates a schematic diagram of the tunable narrow band filter 200 in accordance with an embodiment of the present invention. Capacitors 201-209 form a split capacitive network. An RF input 225 is positioned between capacitors 201, 205. A coupling capacitor 209 couples an RF output 227 located between capacitors 203, 207. Varactor diodes 215, 217 connect the capacitive network to an inductive network formed by inductors 219, 221 and 223. A second set of varactor diodes 229, 233 is attached to capacitors 201, 203, respectively. A control voltage source V, connects to each of its respective diodes 215, 217, 229, 233 through resisters 211, 212, 231, 235, respectively. Thus, the control is used to supply a common tuning voltage to the varactor diodes 215, 217, 229, 233 which tunes capacitors 201, 203, 205, 207 such that they are all gang tuned in a proportional manner. By tuning capacitors 201, 203, 205 and 207 the filter can be tuned across a substantially large bandwidth while still maintaining optimal attenuation. Those skilled in the art will recognize that capacitors 215, 217 provide the majority of the frequency tuning by effectively changing the inductive reactance of inductors 219, 221. Capacitors 201, 203 must be precisely selected so that the proper impedance ratio is maintained across the tuned band. In one case, capacitors 201 and 203 are substantially equal while capacitors 205, 207 are also substantially equal. Varactor diodes 215, 217, 229, 233 are also substantially equal in value. This allows the filter 200 to maintain a narrow bandwidth while still allowing it to be tuned over a substantially wide frequency range to achieve desired signal attenuation.



FIG. 4 is a graph illustrating the filter return loss versus frequency of the tunable narrow band filter over a frequency range of approximately 100 MHz for the filter circuit 200 shown in FIG. 3. The addition of the tuned capacitive network allows the filter to achieve a 30 dB attenuation bandwidth of approximately 260 MHz. This permits the filter to be much more versatile for wide band applications where the filter 200 can be tuned over a much wider frequency range to attenuate signals of a desired frequency.


Thus, the present invention is a narrow band filter tunable over a wide frequency range utilizing a capacitive and inductive network that utilizes a plurality of varactor diodes for tuning a capacitive network over a substantially wide frequency range.


In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.

Claims
  • 1. A tunable narrow band radio frequency (RF) filter comprising: an RF input;an RF output;a capacitive network for coupling the RF input with the RF output;an inductive network for resonating the filter at a predetermined center frequency;a plurality of semiconductor devices for tuning respective capacitors in the capacitive network; andwherein a single voltage source is used for tuning each one of the respective semiconductor devices for moving the resonant frequency of the filter over a substantially wide frequency range.
  • 2. A tunable narrow band RF filter as in claim 1, wherein the plurality of semiconductor devices are varactor diodes.
  • 3. A tunable narrow band RF filter as in claim 1, wherein the at least one semiconductor device includes a plurality of varactor diodes connected to at least one respective capacitor in the capacitive network.
  • 4. A tunable narrow band RF filter as in claim 3, wherein a plurality of varactor diodes are gang tuned using the signal voltage source.
  • 5. A narrow band filter tunable over a substantially wide radio frequency (RF) range comprising: a capacitor network;an inductive network; andwherein the capacitor network includes a plurality of capacitors that are each individually tuned using at least one varactor diode with a common control voltage source.
  • 6. A narrow band filter as in claim 5, wherein the capacitor network couples an input of the filter to an output of the filter.
  • 7. A narrow band filter as in claim 5, wherein the at least one varactor diode is gang tuned with other varactor diodes.
  • 8. A narrow band filter as in claim 5, wherein the common control voltage source is used to tune the filter to a desired frequency of operation.
  • 9. A method for providing a narrow band radio frequency (RF) filter operable over a substantially wide frequency range comprising the steps of: providing a capacitive network;providing an inductive network;connecting the capacitive and inductive network to form a narrow band RF filter;providing a varactor diode tuning network operable from a common control voltage source attached to the capacitive network; andindependently tuning the varactor diode network in a ganged manner so as to set the narrow band filter at an optimal frequency of attenuation.
  • 10. A method for providing a narrow band RF filter as in claim 9, further comprising the step of: associating at least one varactor diode in the varactor diode tuning network with at least one capacitor in the capacitive network.
  • 11. A method for providing a narrow band RF filter as in claim 9, further comprising the step of: adjusting the common control voltage source in order to tune the narrow band RF filter for operating at a desired frequency.