Wireless communications utilize a wide variety of RF frequencies, including S and C bands (2-6 GHz), Ku-band (12-18 GHz), etc. Next generation broadband wireless may utilize at higher RF frequencies. Schneider et al. discloses a photonic radiofrequency system where a single signal source that can generate carrier waves over a variety of RF frequency bands, without sacrificing spectral purity. In contrast, purely electrical solutions encounter obstacles to realizing such a widely tunable source, as challenges arise related to high conduction losses, parasitics and susceptibility to electromagnetic interference (EMI).
Wide tunability is realized by injection locking using a broad comb of harmonics, all derived from externally modulating reference Laser 1 with a low-frequency RF reference that has been subject to nonlinear distortion. The output of Laser 1 may be used as the optical carrier. Laser 2 is a clone laser that is tuned to match and lock to the frequency of any one of the injected harmonics and is used as a reference beam. When the outputs of Laser 1 and Laser 2 are combined, a combined optical signal is generated having a beat frequency equal to the offset (difference) between the frequencies of Laser 1 and Laser 2. Choosing higher harmonics allows very high offset frequencies to be obtained, and because the locked lasers have identical phase noise, the purity of the reference is preserved.
In the prior art system of
As noted, in the prior art system of
Exemplary embodiments may disclose a tunable optical pair source (TOPS) configured to generate first and second output optical beams having respective first and second frequencies that are phase locked with each other. The TOPS may include, a tunable laser configured to generate a first laser beam at the first frequency, the first frequency being variable, and a radio frequency (RF) oscillator configured to transmit an RF reference signal oscillating at a radio frequency. The TOPS may further include, a beam splitter in optical communication with the tunable laser and configured to split the first laser beam and transmit corresponding first and second split beams, a first optical path in optical communication with the beam splitter to receive the first split beam and to provide the first output optical beam, and a second optical path in optical communication with the beam splitter to receive the second split beam and to provide the second output optical beam. The second optical path may include, an electro-optic modulator configured to modulate the second split beam with the RF reference signal to form a modulated beam having a first sideband comb comprising a plurality of harmonics, an optical filter configured to receive the modulated beam and output a filtered optical beam, and a fixed laser configured to generate a second laser beam at the second frequency, the fixed laser being configured to receive the filtered optical beam as a seed. In the disclosed TOPS, the first frequency and the second frequency may be offset by an integer multiple of the RF frequency, and the second frequency may fall within the passband of the optical filter.
In some embodiments, the TOPS may further include an optical circulator having first, second, and third ports. The optical circulator may be configured to receive the filtered optical beam at the first port and pass the filtered optical beam via the second port to the fixed laser, and receive the second laser beam at the second port and pass the second laser beam via the third port to an output of the TOPS. In some embodiments, a TOPS system, such as an antenna (e.g., phased array antenna) may be formed of a TOPS, a combiner that combines the outputs of the TOPS into a combined beam, a third optical path extending from the combiner to a photodetector that is configured to detect the combined beam.
Exemplary embodiments may disclose a method of generating first and second output optical beams having respective first and second frequencies that are phase locked with each other. Exemplary methods may include generating a first laser beam at the first frequency, the first frequency being variable, and transmitting an RF reference signal oscillating at a radio frequency. Exemplary methods may further include, splitting the first laser beam and transmitting corresponding first and second split beams, and receiving the first split beam and providing the first output optical beam in a first optical path. Exemplary methods may further include, receiving the second split beam and providing the second output optical beam in a second optical path, and modulating the second split beam with the RF reference signal to form a modulated beam having a first sideband comb comprising a plurality of harmonics. Exemplary methods may further include, receiving the modulated beam at an optical filter and outputting a filtered optical beam, and receiving the filtered optical beam as a seed and generating a second laser beam at the second frequency. In exemplary methods, the first frequency and the second frequency may be offset by an integer multiple of the RF frequency, and the second frequency may fall within a passband of the optical filter. In some exemplary methods, combining the first optical beam and the second optical beam to thereby form a combined beam, and detecting the combined beam may additionally be performed.
The present disclosure will now be described more fully with reference to the accompanying drawings, in which various embodiments are shown. The invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments. Like numbers refer to like elements throughout the drawings, which include the following:
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the inventive concept disclosure and claims. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art of this disclosure. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
When including an optical filter 213 that has a very narrow passband, the TOPS may efficiently attenuate unwanted harmonics and leave only one harmonic at significant enough signal strength for injection seeding to the fixed laser 215. The secondary laser thus may automatically lock to the harmonic selected by the optical filter without requiring tuning to select between one of many harmonics. Reducing the number of injected harmonics improves the operation of the fixed laser 215 as it locks better to the selected injected wavelength, which reduces instabilities and phase noise. Similarly, an optical filter 213 that is fixed has generally better filtering characteristics (is more selective) as compared to a conventional tunable filter. However, it should be understood that tunable optical filters may certainly be used in place of a fixed filter. However, a fixed filter may have certain advantages as, generally, it (1) reduces the complexity of the system and (2) provides improved performance compared to a tunable filter. However, those with skill in the art will appreciate that having a tunability of the optical filter may be desired in some configurations. For example, a tunable optical filter may be desired to allow slightly adjusting the center of the passband to better match the frequency to the free oscillations of the secondary laser (e.g., fixed laser 215) while still having the bulk of the advantages of a fixed filter (e.g., by virtue of only being limited in its tunability over a narrow range).
In the TOPS 200, the first laser beam generated by tunable laser 201 is transmitted to a beam splitter 205. The beam splitter 205 may be in optical communication with the tunable laser by any known means, e.g., by an optical waveguide such as an optical fiber. The beam splitter 205 is configured to split the first laser beam originating from the tunable laser 201 to generate corresponding first and second split beams (each having the first frequency ω1). The first split beam is transmitted via a first optical path 207 to output 220a of the TOPS 200. The first optical path 207 may be formed by an optical waveguide, such as an optical fiber. Although not shown in
The TOPS 200 may be provided with a comb of harmonics provided from a radio frequency (RF) oscillator 203 and amplifier 202. RF oscillator 203 is configured to generate an electrical RF reference signal oscillating at a radio frequency. For example, the oscillator 203 may generate an RF reference signal having a frequency within the range of several kHz to tens of GHz, such as between 30 kHz to 100 GHz or more. The RF oscillator 203 may be a voltage controlled oscillator and have a voltage input to adjust the frequency of the RF reference signal generated by the RF oscillator 203. The frequency of the RF reference signal generated by the RF reference oscillator may be altered, such as being selectable by a user (e.g., via programming) or otherwise automatically determined.
The RF reference signal generated by the RF oscillator 203 is provided to an amplifier 202. The amplifier 202 may be a saturated RF amplifier and generate a comb of RF harmonics from the RF reference signal provided by the RF reference oscillator 203. The comb of RF harmonics may comprise an electrical signal having plurality of harmonics (or RF tones) at frequencies equal to a corresponding integer multiple of the RF reference signal provided by the RF oscillator 203. For example, when the RF reference signal provided by RF reference oscillator 203 has a frequency of Ω, the comb of RF harmonics may have RF harmonics (tones) at frequencies of Ω, 2*Ω, 3*Ω, n*Ω (where n is a positive integer). Electronic circuitry other than an amplifier 202 may be used to generate the comb of RF harmonics, such as other electronic components, such as a nonlinear transmission line, or other electronic circuitry comprising a nonlinear element.
The comb of RF harmonics generated by the amplifier 202 is provided to an electro-optic modulator 211, e.g., a high-speed electro-optic (EO) modulator, or a Mach-Zehnder-Interferometer (MZI) modulator. The electro-optic modulator 211 modulates the second split beam (having a frequency of ω1) provided by beam splitter 205 with the comb of RF harmonics to generate a modulated beam comprising an optical signal having a center frequency of ω1 and first and second sideband combs of a plurality of harmonics (as represented in spectrum 2b of
The modulated beam generated by electro-optic modulator 211 is transmitted along the second optical path 209 to an optical filter 213. The optical filter 213 receives and filters the modulated beam and outputs a filtered optical beam along the second optical path 209. The dashed line in spectrum 2b illustrates an exemplary passband (encompassing frequency ω2) of the optical filter 213, which when applied to the spectrum 2b via optical filter 213 results in exemplary spectrum 2c of
As described herein, the filter 213 may select a different one of the harmonics of the modulated beam by adjusting the frequency of the tunable laser 201, thus shifting the center frequency (ω1) of the modulated beam along with the sideband combs (and thus shifting each of the harmonics of the sideband combs). Also, the frequency Ω of the RF reference oscillator 203 may be adjusted to maintain a particular tooth of the comb in the passband of filter 213 as the center frequency ω1 of tunable laser 201 is shifted. Additionally, in some embodiments, a width of the passband of the filter 213 may be greater than 2*Ω but less than a bandwidth of the first sideband comb of the modulated beam.
Use of a fixed optical filter for optical filter 213 may be preferred in certain implementations as a fixed optical filter may provide better filtering characteristics (e.g., be more selective) than a tunable optical filter. A fixed optical filter may also reduce the complexity of the TOPS providing a more economic and robust configuration. The filter 213 may be implemented as a Fiber Bragg Grating filter, a dielectric stack filter, an interferometric filter, such as a Fabry-Perot interferometer (or etalon) or Mach-Zehnder interferometer (or etalon) with a differential path length, an optical ring resonator (or ring cavity), an optical filter having a photonic-crystal. In some examples a conventional DWDM filter/multiplexer may be used. Filter 213 may be implemented as one of these optical filters or several of these optical filters cascaded together. Alternatively, the optical filter 213 may be tunable. In some examples, the tunability may be less than +/−Ω or less than +/−0.5*Ω to align (shift closer to each other) the center of the passband with a center of the selected harmonic (within the passband) of the modulated beam. Tunability may be implemented by controlling the size of the optical filter 213, such as by expanding or contracting the optical filter 213 by controlling its temperature and/or applying a compressive or tensile force to the optical filter (e.g., via a piezoelectric transducer), or by changing the angle and/or shifting the position or orientation of a dielectric-stack filter.
The TOPS may include an optical circulator 217. In some embodiments, the optical circulator 217 may have first, second, and third ports. In the example of
The TOPS may include a fixed laser 215 that is configured to generate a second laser beam at a second frequency (ω2) (as represented by spectrum 2d in
In other examples, the fixed laser 215 may receive the filtered optical beam without use of an intervening circulator, such as (for example), as being directly coupled with rom the optical filter 213 with an optical waveguide, without other intervening optical components interpose on that portion of the second optical path. In this alternative implementation without circulator 217, a separate port into the secondary laser 215 may be used to receive and input the filtered optical beam for injection locking. Specifically, the laser cavity of fixed laser 215 may be structured so as to provide for coupling of light to and from the laser cavity at two separate ports. For example, a Fabry-Perot cavity may be used where a semi-transparent mirror is used at both ends of the cavity so that each end of the cavity may serve as a port. In this configuration, filtered optical beam from optical filter 213 may (the seed signal) may be injected through a first port and the second laser beam may be output from a second port of the laser cavity of fixed laser 215. Such a configuration may not need circulator 217 to separate the injected signal from the second laser beam output from fixed laser 215.
As represented in spectrum 2d, filtered optical beam received by the fixed laser 215 (represented by dashed lines) may include attenuated harmonics (attenuated by the optical filter 213 due to falling outside its passband) on either side of the harmonic selected by the optical filter 213 (at frequency ω2). These attenuated harmonics may be further filtered (attenuated), relative to the selected harmonic, as a result of the fixed laser 215 automatically locking on to the selected harmonic (at frequency ω2) in generating the second laser beam (at frequency ω2). The first frequency ω1 of the tunable laser 201 and the second frequency ω2 of the fixed laser 215 are offset from one another by an integer multiple of the RF frequency Ω.
Additionally, the tunable laser 201 may be tuned to shift a desired harmonic of the modulated beam to a frequency range within the passband of filter 213. Tuning laser 201 in this way may be used to select the desired integer multiple of the RF frequency Ω by which the frequencies of the first and second output optical beams are offset. It will be apparent that tuning laser 201 to shift the first frequency ω1 of the tunable laser 201 causes a shift in the frequency (also ω1) of the first output optical beam as well as a shift of the sideband combs of the modulated signal (i.e., all of the spectrum 2b is shifted). However, when the optical filter remains substantially fixed (e.g., the dashed line in spectrum 2b representing optical filter 213 passband is not shifted), a new harmonic (a new sideband tooth) of the modulated signal is eventually shifted into the passband of optical filter 213 to be selected by optical filter 213. Thus, the frequency ω2 of the second laser beam generated by fixed laser 215 may correspond to the frequency of a different harmonic of the modulated signal (but remaining in the range of the passband of the optical filter 213). As each harmonic of the modulated signal is offset from the center frequency ω1 of the modulated signal by a corresponding integer multiple of the RF reference frequency of Ω (the frequency of each harmonic=ω1+/−n*Ω), tuning the tunable laser 201 in this way may be used to select this integer multiple of the RF reference frequency of Ω (i.e., select the value of the integer “n” in ω2=ω1+/−n*Ω), The resonant operational frequency of the fixed laser 215 may be aligned with the center frequency of the passband of the optical filter 213 or otherwise match the optical filter 213 to fall within the passband of the optical filter 213.
It should be appreciated that the frequency of the second laser beam of laser 215 may vary (to align with the frequency of the selected harmonic) even when the second laser beam is generated by a fixed laser and not generated by a tunable laser. As used herein, a tunable laser 201 may refer to a laser designed so that the wavelength of light it generates may be changed, or tuned, over a certain range. In the case of semiconductor lasers, the tuning may be achieved by a controller (e.g., computer) that controls a change in the temperature at which the laser operates via the use of a thermo-electric cooler or a heater, and/or that controls a change in the injection current of the laser. When designing a system with a tunable laser, e.g., tunable laser 201, provisions may be made for varying the temperature or injection current, or both. In contrast, for a fixed laser, e.g., fixed laser 215, care may be taken in designing the circuitry powering it and environmental control to keep them stable so as to avoid unintentional change in the operating wavelength. For example, a fixed laser may have a control system (e.g., a controller, such as a computer) to maintain a substantially constant injection current and/or substantially constant temperature of the fixed laser. Both the fixed laser 215 and the tunable laser 201 may be implemented using similar, or identical, semiconductor chips. Power control circuitry and environment control circuitry surrounding the chip or chips, in which the resonant cavity of laser is formed determines whether such a laser constitutes a fixed laser or tunable laser. Generally, a fixed laser, e.g., laser 215 may include a stable power supply and a stable environment whereas for a tunable laser, e.g., tunable laser 201 may include a power supply and/or environment that are controlled to be altered. Thus, it should be appreciated that a fixed laser may have frequency that is not perfectly fixed. A fixed laser has a finite linewidth, indicating how much its frequency tends to vary even when there is no intentional variation of its inputs/operating conditions. Thus, laser 215 may be considered fixed by virtue of the absence of power control circuitry and environmental control circuitry configured to alter the operating frequency from a first target (i.e., selectable) operating frequency to a second target operating frequency in response to some direction (e.g. user input and/or programming) of the overall system operation.
In some embodiments, the fixed laser 215 may be substantially fixed during operation. However, the fixed laser 215 is phased locked with a harmonic offset from the frequency of the laser beam of the tunable laser 201. Thus, changes to first laser beam of the tunable laser 201, whether intentional or unintentional (i.e., noise), whether in phase or frequency, are correspondingly reproduced in the second laser beam of the fixed laser 215.
The TOPS 200 may be implemented in a variety of TOPS systems, such as a variety of wireless communication systems.
One or more modulators 312 may be provided to phase and/or amplitude modulate one or both of the first and second output optical beams output by TOPS 200.
Alternatively, modulation of a modulator 312c may be provided to receive the combined optical beam from combiner 302. In this configuration, the combiner 302 may combine the first and second output optical beams so that their polarization directions (linear or circular) are orthogonal to each other in the combined optical beam. Modulator 312c may be a vector modulator and phase and/or amplitude modulate one or both of the first and second output optical beams and alter the polarization direction of one or both of the first and second output optical beams so that they interfere with one another.
When the polarization direction of the combined first and second optical beams forming the combined optical beam are (at least partially) aligned and not orthogonal to each other (as provided by either the combiner 302 or modulator 312c), the first and second output optical beams may constructively and destructively interfere with each other. The combined optical beam may thus have a beat frequency of |ω2−ω1|, an RF frequency corresponding to an integer multiple of the RF reference frequency Ω (i.e., n*Ω). Further, any modulation of the first and/or second output optical beams also is reflected in modulation of this RF beat signal. This modulation of the beat signal corresponds to the modulation, both in amplitude and phase, of the RF electromagnetic wave output by the corresponding antenna 310 (discussed below).
The photodetector 304 receives the combined optical beam to generate an RF electrical signal (a photocurrent) corresponding to the RF beat frequency of the combined optical beam. The photocurrent produced by photodetector 304 may faithfully regenerates an original input RF signal to the TOPS. The intrinsic noise components of the phases of lasers 201, 215 correlate to each other and may be identical or otherwise correlate to each other, and hence may not contribute to the time-varying component of the photocurrent, but may rather cancel out.
The RF electrical signal output of photodetector 304 may then drive or control antenna 310 to be transmitted as an electromagnetic wave. The RF electrical signal may be applied directly to antenna 310 (without an RF transmission line or an amplifier), or may be transmitted to antenna 310 via an RF transmission line 308 with optional amplification by an amplifier inserted in the RF path from the photodetector 304 to antenna 310 (amplifier not shown). In some examples, the RF signal output by the photodetector may be processed by a computer for data extraction and/or synthetization (e.g., after downconversion to baseband and digitization by an A/D converter). Owing to the superposition principle obeyed by the total electric field incident on the photodetector 304, the photocurrent (and hence the output RF signal) may be dependent on the phase difference of lasers' 201, 215 outputs and, consequently, the frequency of the photocurrent's oscillations proportional to (e.g., an integer multiple of) the RF-reference-signal frequency of the RF oscillator 203.
Additionally, the combined optical beam may have properties and/or attributes where the phase noise of the first optical beam and the phase noise of the second optical beam are correlated (see
The TOPS system of
For example, a desired frequency of the second laser beam may be ω2 (e.g., in this example, the desired frequency ω2 corresponding to a predetermined value correlating to the center of or otherwise within the passband of optical filter 213 (and corresponding to the operational frequency range of second fixed laser 215)). As described herein, to obtain the desired second laser beam frequency ω2 at a selected Nth harmonic to provide a desired RF beat frequency (and corresponding RF carrier frequency of the antenna 310) of N*Ω (where N*Ω=|ω2−ω1|), the controller 400 may control (e.g., provide a command to) tunable laser 201 to generate an initial first laser beam frequency ω1 and control (e.g., provide a command to) reference oscillator 203 to generate the RF reference signal with an RF frequency of Ω. As noted herein, by virtue of the passband of optical filter 213 encompassing the Nth harmonic, the Nth harmonic of the sideband is passed to the fixed laser 215 to seed fixed laser to generate the second laser beam at a frequency of ω2. As described herein, the Nth harmonic has a frequency of ω2=ω1+/−N*Ω, thus obtaining the desired RF beat frequency (and RF carrier frequency of antenna 310) of N*Ω.
During a later operation, the desired RF beat frequency (and RF carrier frequency of antenna 310) may be altered by coordinating the control of the tuning of laser 201 and the RF frequency Ω of the reference signal of RF oscillator 203. Such a later operation may be a real-time alteration of the TOPS system to alter in real-time the RF beat frequency and RF carrier frequency of antenna 310, or the later operation may be a reconfiguration of the TOPS system for a different later implementation (e.g., with a different antenna or antenna array to operate at a different RF carrier frequency). For example, it may be desired to change the RF beat frequency of |ω2−ω1-1| in an initial configuration of the TOPS system to an RF beat frequency of |ω2−ω1-2| in a subsequent configuration. Assume an initial configuration of an RF beat frequency of ω1-1, with an RF frequency of RF oscillator 203 of Ω1 via selection of an Nth harmonic is obtained in a manner as described above. To achieve the desired subsequent configuration (with a subsequent RF beat frequency and RF carrier frequency of |ω2−ω1-2|), the controller 400 may controller may control (e.g., provide a command) tunable laser 201 to alter the frequency of the generated a first laser beam to ω1-2 while at the same time control RF oscillator 203 to alter the RF frequency of the RF reference signal to Ω2. The frequency of the second laser beam may be maintained at ω2 or otherwise maintained within the passband of the optical filter 213 in both the first configuration and the second configuration of the TOPS system. As noted herein, in some embodiments, when the frequency of ω1 of the first laser beam is changed, the frequencies of comb of sidebands may change correspondingly and the optical filter 213 may select a new harmonic to pass to the fixed laser 215 (e.g., change selection of Nth harmonic in the first configuration to the (N+1)th harmonic in the second configuration). However, in this example, controller 400 may control the RF frequency Ω to be altered by 1/N*Δω1 as a function of the change of ω1 (the frequency of the first laser) (where N is the integer number of the harmonic falling within with optical filter 213). Specifically, when ω1 is increased, the RF frequency Ω may be decreased by 1/N*Δω1 and when ω1 is decreased, the RF frequency Ω may be increased by 1/N*Δω1 thus maintaining the Nth harmonic at ω2 and within the passband of the optical filter 213, while changing (i.e., tuning) the frequency of the first laser beam of tunable laser 201 and thus the RF beat frequency of the combined beam and RF carrier frequency of antenna 310. In this example, changing the frequency of the first laser from ω1-1 to ω1-2 may be made while altering RF frequency of the RF reference signal from Ω1 to Ω2 where Ω2=Ω1−1/N*|ω1-2−ω1-2| (when ω1-2>ω1-1) or Ω2=Ω1+1/N*|ω1-2−ω1-2| (when ω1-2<ω1-1) and N is the Nth harmonic that is within the passband of optical filer 213. Although the above example has been made with respect to first and second configurations with respective first and second sets of frequencies, it will be appreciated that such coordinated alteration of the configuration of the TOPS system may be continuous and/or provided performed with respect to any number of configurations. However, if the RF beat frequency/RF carrier frequency are altered to a significant extent, it may be beneficial to also modify the antenna 310 (e.g., replace with a new antenna) to provide an operating frequency of the antenna 310 corresponding to the RF beat frequency.
To maintain the frequency of the second laser beam at ω2 (e.g., to maintain at the center of or within the passband of the optical filter 213) in both the first and second configurations, controller 400 may control the frequency of the first laser beam to be is the frequency of the second laser beam of fixed laser 215, ω1-1 is an initial frequency of the first laser beam of laser 201, and ω1-2, is an adjusted frequency of the first laser beam. To maintain ω2 is the frequency of the second laser beam
Additional steps for optional use in conjunction with the disclosed steps above, may be disclosed below. Step 267 may include: combining the first output optical beam and the second output optical beam to thereby form a combined optical beam, e.g., by beam combiner 302. Step 269 may include: detecting the combined optical beam, e.g., by photodetector 304. The method may also include the sub-step comprising modulating at least one of: phase and amplitude of one or both of the first and second output optical beams prior to combining the same in step 267 or after combining in step 267 and prior to step 269. Step 271 may include: transmitting the RF reference signal, e.g., by antenna 310.
In some embodiments, step 263 may further include passing a single harmonic of the modulated beam and suppressing the remaining harmonics of the modulated beam. Furthermore, the first and second output optical beams may be mutually coherent.
As noted, tunable laser 201 acts as the primary or reference laser used to generate a seed signal, which injection-seeds the fixed laser 215. Use of a fixed laser 215 or other laser operating in a known or selected (e.g., programmable) range of frequencies allows for the inclusion of an optical filter 213 with a narrow passband, which may be narrow enough to encompass only a single harmonic sideband from the modulation-sideband comb. Thus, the passband of the optical filter and the frequency of the fixed laser 215 may be matched. For example, the passband of the optical filter may be matched to the resonant frequency of the fixed laser 215 and thus the passband of the optical filter may encompass the frequency of the beam generated by the fixed laser 215. When the optical filter is fixed, a simpler more robust system may result.
Optical beams originally generated by laser beams of the tunable laser 201 and the fixed laser 215 are then combined to form a combined beam having a beat frequency corresponding to the difference in frequencies of the beams output by tunable laser 201 and fixed laser 215, such beat frequency being an RF frequency corresponding to the RF reference oscillator (e.g., an integer multiple thereof, which should be understood to include the integer of 1). As tunable laser 201 is tunable and the frequency of fixed laser 215 may be fixed, adjusting the frequency of tunable laser 201 results in changing this difference in laser beam frequencies and thus changing the RF beat frequency formed by the combined beam. Specifically, adjusting the frequency of tunable laser 201 shifts the comb of harmonics so that the optical filter selects a different harmonic (although within the same passband frequency). Continuous tuning of the RF beat frequency may be achieved by concurrent adjusting the frequency of tunable laser 201 and the RF-reference-oscillator-203 frequency Ω so as to maintain one of the teeth in the comb of harmonics within the passband of filter 213 and within the locking range of fixed laser 215.
These modifications may provide improved harmonic spur suppression. For example, filtering the sideband comb output by electro-optic modulator 211 may be performed with a fixed optical filter. A fixed optical filter may thus provide a narrow and more precise passband as compared to the tunable filter. For example, Fiber Bragg Grating (FBG) filters may be implemented with passbands of 50 pm (6 GHz) wide. Such a narrow filter may thus be used to select a single harmonic for injection locking prior to injection to laser 215, thereby relieving the injected laser cavity (of laser 215) of its filtering role. Thus, tuning of the laser 215 to select one of several injected harmonics may be avoided, and the laser 215 may be implemented as a fixed laser.
The significant reduction of spurs in the output of this modified TOPS configuration can be seen in
Additionally, the embodiment of
The foregoing is illustrative of exemplary embodiments and is not to be construed as limiting thereof. Although a few exemplary embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible without materially departing from the novel teachings and advantages of the inventive concepts. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the claims.
This application is a continuation application of U.S. application Ser. No. 16/847,417 filed Apr. 13, 2020, which claims priority to U.S. Provisional Patent Application No. 62/833,310 filed Apr. 12, 2019, the disclosure of each of these application being hereby incorporated by reference in its entirety. This application also incorporates by reference the disclosure titled, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” authored by Schneider et al., and published in Nature Photonics, online Jan. 20, 2013, which may provide background information such as exemplary details of structure and operation of corresponding elements of this non-provisional application.
Number | Date | Country | |
---|---|---|---|
62833310 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16847417 | Apr 2020 | US |
Child | 17214354 | US |