1. Field of the Invention
This invention relates generally to waveguides and, more particularly, to tunable waveguide filters.
2. Description of the Related Art
Electromagnetic signals with wavelengths in the millimeter range are typically guided to a destination by a waveguide because of insertion loss considerations. An example of one such waveguide can be found in U.S. Pat. Nos. 6,603,357 and 6,628,242 which disclose waveguides with electromagnetic crystal (EMXT) surfaces. The EMXT surfaces allow for the transmission of high frequency signals with near uniform power density across the waveguide cross-section. More information on EMXT surfaces can be found in U.S. Pat. Nos. 6,262,495 and 6,483,480.
In some waveguide systems, filters are used to control the flow of signals during transmission and reception. The filters are chosen to provide low insertion loss in the selected bands and high power transmission with little or no distortion. A typical millimeter wave system includes separate waveguide and filter combinations, with each combination being sensitive to a different resonant frequency. The filters include a resonant cavity that can be tuned to a particular resonant frequency using mechanical adjustments such as tuning screws as disclosed in U.S. Pat. No. 5,691,677 or movable dielectric inserts as disclosed in U.S. Pat. Nos. 4,459,564 and 6,392,508. In both of these cases, tuning is accomplished by mechanically adjusting the screw or insert to change the length of the resonant cavity and the resonant frequency.
If the mechanical adjustment cannot tune the resonant frequency quickly enough, then more waveguide and filter combinations will be needed, with each one tuned for a different resonant frequency. For example, a single antenna can be coupled to separate filters and their corresponding waveguides. In this setup, one filter-waveguide combination can be tuned to transmit and receive communication signals in one frequency band and another can be tuned to transmit and receive radar signals in a different frequency band. It is desired, however, to reduce the number of waveguide-filter combinations needed to transmit signals over the different frequency bands.
The present invention provides a tunable filter which includes a waveguide with one or more resonant cavities. Each resonant cavity has a resonant frequency that is tunable in response to tunable impedance structures coupled to each of the resonant cavities. The filter transmits the signal in a pass-band which includes the resonant frequency and reflects the signal outside the pass-band. The tuning can be done by adjusting the impedance and/or resonant frequency of the impedance structures to change a propagation constant of the signal and provide the filter with a desired frequency response.
The tunable filter can be used in a communication system which includes multiple communication platforms. The waveguide filter can be connected to the communication platforms to provide frequency selective communications between them and an external system, such as an antenna.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following drawings, description, and claims.
a, 1b, and 1c are simplified top, side, and front elevation views, respectively, of a tunable waveguide filter;
a and 3b are simplified top and side views, respectively, of tunable impedance structures which include micro-electromechanical devices with variable capacitances;
a, 8b, and 8c are simplified top, side, and front elevation views, respectively, of a tunable waveguide filter;
a, 10b, and 10c are simplified top, side, and front elevation views, respectively, of a notch filter using the tunable waveguide filter of
a, 1b, and 1c show top, side, and front elevation views, respectively, of a waveguide filter 10 which includes tunable impedance structures 24 on opposed sidewalls 12 and 14. The other waveguide sidewalls 11 and 13 are spaced apart by a height b (See
Cavity forming boundary structures 16, which are conductive posts with diameters D, are positioned within the waveguide and are electrically spaced apart by a distance Lcav to form cavities 26. Structures 16 extend vertically between sidewalls 11 and 13 and the spacing of structures 16 extends longitudinally along filter 10 between ends 17 and 19. Lcav refers to the electrical length of each resonant cavity 26. This is equal to the physical length of the cavity multiplied by the ratio of the propagation time of a signal through the cavity to the propagation time of a signal in free space over a distance equal to the physical length of the cavity.
The number and arrangement of structures 16 can be chosen to provide filter 10 with a desired quality factor Q. For example, optional cavity forming boundary structures 18 can be positioned adjacent to structures 16 and between sidewalls 12 and 14 so that multiple conductive posts define each end of resonant cavity 26. This has the effect of changing the total inductance and Q of cavity 26 because the posts are electrically connected in parallel.
Impedance structures 24, each with a width w, are spaced apart by a distance 23 so that there is one pair on opposed sidewalls 12 and 14 within each cavity 26. Structures 24 include electromagnetic crystals (EMXT) surfaces which can be used to obtain a desired surface impedance in a band of frequencies around the resonant frequency, Fres, of structure 24 with one such band being the Ka-Band.
Cavities 26 are one half of a wavelength long at the cavity resonant frequency Fcav, so the surface impedance of structure 24 can be changed to tune Fres relative to Fcav. This has the effect of allowing some signals with a desired propagation constant β and operating frequency F to be outputted through end 19 as signal Sout, while reflecting signals with different β values and frequencies. For example, Sout will equal S(β1) or S(β2) if the impedance of structures 24 is chosen so that Fres resonates with signals S(β1) or S(β2), respectively. Because the impedance of structure 24 determines which β values will resonate with Fcav, filter 10 can selectively transmit some frequencies in a pass-band while reflecting others outside the pass-band. The signals are represented by an electromagnetic wave with an electric field E, a magnetic field H, and a velocity U (See
Conductive vias 31 extend from strips 30, through substrate 28 to conductive layer 27. Vias 31 and gaps 32 reduce substrate wave modes and surface current flow, respectively, through substrate 28 and between adjacent strips 30. The width of strips 30 present an inductive reactance L to the transverse E field and gaps 32 present an approximately equal capacitive reactance C. Although structures 24 are shown in
Numerous materials can be used to construct impedance structure 24. Dielectric substrate 28 can be made of many dielectric materials including plastics, insulators, poly-vinyl carbonate (PVC), ceramics, or semiconductor material such as indium phosphide (InP) or gallium arsenide (GaAs) Highly conductive material, such as gold (Au), silver (Ag), or platinum (Pt), can be used for conductive strips 30, conductive layer 27, and vias 31 to reduce any series resistance.
With impedance structures 24 on sidewalls 12 and 14, waveguide 10 is particularly applicable to passing vertically polarized signals that have an E field transverse to strips 30. At a particular resonant frequency, strips 30 present an inductive reactance L to the transverse E field, and gaps 32 between strips 30 present an approximately equal capacitive reactance. Hence, structure 24 presents parallel resonant L-C circuits to the signal's transverse E field component (i.e. a high impedance). By controlling and varying the impedance of structures 24 with a bias across capacitors 40, β can be varied and Lcav can be changed.
Structures 24 provide a high surface impedance at Fres and over a band of frequencies around Fres. Hence, an incident wave at Fres will have a reflection coefficient of one and a phase of zero degrees. For a passive EMXT, without a tuning mechanism such as capacitors 40, the thickness of substrate 28, the area of strips 30, the permittivity ε and permeability μ=0 of substrate 28, and the width of gap 32 determine Fres and the bandwidth of the pass-band. With capacitors 40, however, Fres and β can be varied with a bias voltage by changing the impedance of structures 24. At Fres, structure 24 is in its highest impedance state so that little or no surface currents can flow normal to strips 30 and, consequently, tangential H fields along strips 30 are zero and the E field is uniform across width a. At frequencies below or above Fres, structures 24 behave as a non-zero inductive or capacitive surface impedance, respectively.
The capacitance of each capacitor 40 is inversely proportional to the bias across it. Since capacitors 40 between adjacent conductive strips 30 are in parallel, if the reverse bias applied across capacitors 40 increases, then the total capacitance decreases. In this case, structure 24 resonates at a higher frequency. If the reverse bias across capacitors 40 decreases, then the total capacitance increases. In this case, structure 24 resonates at a lower frequency.
Variable capacitors 40 can include varactors, MOSFETS, or micro-electromechanical (MEMS) devices, among other devices with variable capacitances. The varactors can include InP heterobarrier varactors or another type of varactor embedded in impedance structure 24 so that its resonant frequency is electronically tunable. A MOSFET can also be used as an alternative by connecting its source and drain together so that it behaves as a two terminal device. In any of these examples, the capacitance of capacitors 40 can be controlled by devices and/or circuitry embedded in waveguide 10 or positioned externally.
a and 3b are simplified side and top views, respectively, of impedance structure 24 with variable capacitors 40 which include micro-electromechanical (MEMS) devices 81. Devices 81 can include magnetic materials, such as nickel (Ni), iron (Fe), and cobalt (Co). The magnetic properties of devices 81 are chosen so that the distance between an end 83 and strip 30 can be changed by applying a magnetic field. Each device has multiple fingers 82 extending between adjacent strips 30. The magnetic field then controls the capacitance between adjacent conductive strips 30. As the distance between them decreases, the capacitance increases. Also, the number of fingers 82 that bend increases as the magnitude of the magnetic field increases, so that the capacitance of devices 81 is more linear as a function of magnetic field. The capacitance also increases as the overlap between end 83 and conductive strip 30 increases. These relationships are given by the well-known equation C=εA/d, in which ε is the permittivity, A is the overlap area, and d is the distance, all between end 83 and strip 30.
For resonance to occur, Lcav should be one-half of the signal wavelength which, in this case, is equal to 5 mm so that a signal with β=6.28 rad/cm will resonate with Fcav. If it is desired to have signals at F=30 GHz, 36 GHz, or 40 GHz resonate with cavity 26, then Fres should be equal to about 30 GHz (point 61), 34 GHz (point 62), or 49 GHz (point 63), respectively. Hence, filter 10 is tuned by changing the impedance of structures 24 which changes Fres.
When Fres is less than F, β increases and the resonant wavelength decreases (β=2π/λg). In this case, cavity 26 “lengthens” electrically (i.e. Lcav increases) which causes Fcav to decrease. When Fres is greater than F, β “shrinks” electrically (i.e. Lcav decreases) which causes Fcav to increase.
At a constant F, β decreases when Fres increases, so Fres can be chosen so that a desired F resonates with Fcav. For example, curves 50, 52, and 56 intersect at about Fres=30 GHz so that β is equal to 6.28 rad/cm (point 51 in the graph). In this case, a signal at F=30 GHz will be transmitted through filter 10. Curve 54 is asymptotic to Lcav=λg/2 at higher values of Fres indicating that its β value will not fall below 6.28 rad/cm. Since curve 54 does not intersect curve 56, a signal at F=34.3 GHz will not be transmitted through filter 10. Hence, if F is too large, filter 10 will not propagate signals effectively.
At 0 V bias, cavity 26 is ‘electrically long’ and Fcav is about 31.6 GHz. As the reverse bias across capacitors 40 increases, Fres increases towards 35 GHz. Fcav, which is slightly higher than Fres, rises ahead of Fres but at a slower rate. Fcav will be equal to Fres at a frequency in the range between 31.6 GHz to 33.2 GHz. Above this ‘coincident frequency’, Fcav will be lower than Fres, but it will still increase as Fres increases.
a, 8b, and 8c show top, side, and front elevation views, respectively, of a waveguide filter 100 with an iris structure 25. Filter 100 includes similar numbering to filter 10 with the understanding that the discussion above applies equally well here. Structure 25 includes cavity 26 which is formed from cavity forming boundary structures 41 extending from surfaces 11 and 13 towards the interior of filter 100 so that a distance 44 separates them. Impedance structures 24 are positioned on surfaces 91 between structures 41 and within cavity 26 to adjust the resonant frequency of cavity 26 as discussed above. The operation of filter 100 is similar to the operation of filter 10 in that the capacitance of impedance structure 24 can be adjusted to change Lcav.
In all of the above embodiments, sidewalls 11-14 can have impedance structures. The waveguide can then be used to filter a vertically and/or a horizontally polarized signal. For vertically polarized signal, impedance structures on sidewalls 12 and 14 filter the signal. For horizontally polarized signals, impedance structures on sidewalls 11 and 13 filter the signal. Only one of sidewalls 11–14 can have an impedance structure to make the bandwidth of the pass-band narrower than the case with two impedance structures positioned on opposed sidwalls. The bandwidth can also be controlled by making the impedance of one impedance structure high while making the impedance of the opposed impedance structure low so that the structure with low impedance behaves like a metallic surface.
In the filters, the cavity forming structures can also include tunable impedance structures so that their impedance can be adjusted to change Lcav. In filter 10, for example, surfaces of cavity-forming structures 16 can include EMXT structures similar to structures 24 to adjust the impedance of cavity 26. In waveguide 100 surfaces 92, 93, 94, and 95 can include EMXT structures to adjust the impedance of iris structure 25.
Hence, a tunable waveguide filter is disclosed. It can be used in systems which typically require multiple filters to provide different resonant frequencies. The filter can provide different resonant frequencies because it can be tuned which decreases the complexity and component count of the communication system. For example, using the waveguide filter, one antenna can provide radar, communications, and other communication functions over many different frequencies.
The embodiments of the invention described herein are exemplary and numerous modifications, variations and rearrangements can be readily envisioned to achieve substantially equivalent results, all of which are intended to be embraced within the spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3657670 | Kitazume et al. | Apr 1972 | A |
4030051 | Shimizu et al. | Jun 1977 | A |
4124830 | Ren | Nov 1978 | A |
5691677 | DeMaron et al. | Nov 1997 | A |
5892414 | Doughty et al. | Apr 1999 | A |
5935910 | Das | Aug 1999 | A |
5959512 | Sherman | Sep 1999 | A |
6628242 | Hacker et al. | Sep 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20050270125 A1 | Dec 2005 | US |