Antennas can be divided into two groups: directional and non-directional. Directional antennas are designed to receive or transmit maximum power in a particular direction. Often, a directional antenna can be created by using a radiating element and a reflective element.
In use, directional antennas may have a disadvantage of protruding. Often, the protrusion is because the directional antennas are attached as a separate component. A possible problem with directional antennas is many directional antennas have been designed or have been tuned for a desired radiation pattern but are not tuned with respect to one another. An additional possible problem is directional antennas can be difficult to use in a device with an unobtrusive form factor.
Many antennas, both directional and non-directional, are designed to radiate most efficiently at a particular frequency or in a particular frequency range. An antenna may be tuned to influence the antennas radiation pattern at a frequency. A problem with tuning antennas is the resulting radiation pattern can be altered by the device the antenna is included in or may be sub-optimal for a location or a particular application.
The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools, and methods that are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
A technique for improving radio coverage involves using interdependently tuned directional antennas. A system according to the technique includes, a substrate with a transceiver, a plurality of directional antennas associated with the same electromagnetic radiation (EMR) frequency, and a connector. In some example embodiments, a plurality of directional antennas are interdependently tuned to achieve a desired radiation pattern. In some example embodiments, a second plurality of antennas can be included in the substrate associated with a second EMR frequency. In some example embodiments, the connector is a network interface. In some example embodiments, the individual directional antennas have different radiation patterns to achieve a desired combined radiation pattern.
Another system according to the technique is a wireless access point (AP) including a processor, memory, a communication interface, a bus, and a printed circuit board (PCB) comprising a radio and a plurality of antennas associated with a particular radio frequency. In some example embodiments, the antennas are interdependently tuned creating a desired and/or a generally optimal radiation pattern. In some example embodiments, the PCB includes a second plurality of antennas associated with a second radio frequency. In some example embodiments, the AP has an unobtrusive form factor. In some example embodiments, a plurality of antennas are tuned to a first frequency and individual antennas in the plurality will have different radiation patterns. In some example embodiments, the AP is operable as an untethered wireless connection to a network.
A method according to the technique involves interdependently tuning directional antennas. The method includes finding the desired voltage standing wave ratio (VSWR) for a first and second directional antenna, tuning the first and second directional antennas, measuring the combined radiation pattern of the first and second directional antennas, retuning the first and second directional antenna until the expected radiation pattern is achieved. In some example embodiments of the method, the radiation patterns are measured in the H and E plane. In some example embodiments of the method, the desired VSWR is determined by the desired and/or generally optimal radiation pattern of the first and second directional antennas. In some example embodiments of the method, the first and second directional antennas are tuned for different radiation patterns.
These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following descriptions and a study of the several figures of the drawings.
Embodiments of the invention are illustrated in the figures. However, the embodiments and figures are illustrative rather than limiting; they provide examples of the invention.
In the following description, several specific details are presented to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or in combination with other components, etc. In other instances, well-known implementations or operations are not shown or described in detail to avoid obscuring aspects of various embodiments, of the invention.
In the example of
In the example of
In some example embodiments, a directional antenna includes a known or convenient reflecting element and a known or convenient radiating element. In some example embodiments, a plurality of directional antenna arrays may be included in the substrate with each array associated with a different frequency. The first directional antenna 104-1 and the second directional antenna 104-2 may form one of the plurality of antenna arrays or a portion of one of the plurality of antenna arrays.
In some example embodiments, a plurality of directional antennas can be included in a substrate with each antenna pointed in a different direction. In some example embodiments, two directional antennas included in a substrate are pointed in opposite or approximately opposite directions to cover a maximum or an approximately maximum horizontal area. In some example embodiments, the combined covered area by two directional antennas will be greater than would be possible using non-directional antennas of similar size, shape, material and/or cost.
In some example embodiments, antennas can be interdependently tuned to achieve a desired radiation pattern. Tuning antennas is well known to one skilled in the art. Interdependently tuning the antenna involves tuning the antenna considering the combined radiation pattern of a plurality of antennas, rather than the radiation pattern of an individual antenna. In some example embodiments, the antennas can be tuned interdependently considering a range of frequencies in which the antenna will operate.
In the example of
In some example embodiments, a transceiver is designed to detect and send transmissions in an EMR frequency range or of one or more types of transmissions. For example a transceiver could be designed to work specifically with transmissions using 802.11a, 802.11b, 802.11g, 802.11n, short wave frequencies, AM transmissions, FM transmissions, etc. A known or convenient transceiver may be used.
In some example embodiments, a transceiver may include one or more transceivers. Alternatively or in addition, the transceiver may operate on multiple bands to detect multiple frequency ranges, to detect multiple types of transmissions, and/or to add redundancy. In some example embodiments, a transceiver is coupled to a plurality of directional antennas and is able to detect or send transmissions using the plurality of directional antennas. In some example embodiments, a transceiver is coupled to a plurality of antennas and the transceiver uses, for example, the antenna receiving the strongest signal. In some example embodiments, a transceiver includes a processor and memory.
In the example of
In some embodiments, data may be modified when received or sent by a connector. Non-limiting examples of modifications of the data include stripping out routing data, breaking the data into packets, combining packets, encrypting data, decrypting data, formatting data, etc.
In some example embodiments, a connector includes a processor, memory coupled with the processor, and software stored in the memory and executable by the processor.
In the example of
In some example embodiments, antennas associated with different frequency ranges can be interdependently tuned. Interdependently tuning uses the combined radiation pattern of a plurality of antennas at a frequency or in a frequency range while they are being tuned.
In the example of
In some example embodiments, a radio and a coupled antenna will be associated with the same frequency or frequency band. In some example embodiments, a plurality of coupled antennas are interdependently tuned creating a combined radiation pattern that results in beneficial coverage area for an intended, possible, or known or convenient use of the radio. In some example embodiments, a plurality of antennas are interdependently tuned to achieve a generally optimal radiation pattern. Some examples of radiation patterns are described later with reference to
In the example of
In the example of
In some example embodiments, a band radio is designed to detect transmissions over an antenna which are near a frequency or in a frequency range. In some example embodiments, a substrate includes a plurality of band radios. Each of the band radios are associated with a wireless communication standard and used to communicate with clients using the associated wireless communication standard. Non-limiting examples of wireless communication standards include—802.11a, 802.11b, 802.11g, 802.11n, 802.16, or another wireless network standard known or convenient. In some example embodiments, a band radio is coupled with a plurality of directional antennas and the band radio is capable of using the directional antenna with the strongest transmission signal for wireless communication with a client. In some example embodiments, a band radio determines which of a plurality of coupled directional antennas to transmit data to a client through by determining the antenna receiving the strongest signal from the client. In an alternative example embodiment, a band radio sends a data transmission on all coupled antennas regardless of the signal strength received from the client. In some example embodiments, a band radio is designed to detect a certain type of transmissions. Non-limiting examples of transmission types include—802.11a, 802.11b, 802.11g, 802.11n, AM, FM, shortwave, etc.
In some example embodiments, data sent or received may be modified by a band radio. Non-limiting examples of modifications of the data include—stripping out some or all of the routing data, breaking the data into packets, combining packets, encrypting data, decrypting data, formatting data, etc.
In the example of
In some example embodiments, software stored in memory is capable of managing one or more clients associated with an AP. In some example embodiments, software stored in memory schedules data transmissions to a plurality of clients. In some example embodiments, software included in memory facilitates buffering of received data until the data can be wirelessly transmitted to a client. In some example embodiments, software included in memory is capable of transmitting data simultaneously to a plurality of clients using a plurality of band radios.
The AP 300 may operate as tethered and/or untethered. An AP operating as tethered uses one or more wired communication lines for data transfer between the AP and a network and uses a wireless connection for data transfers between the AP and a client. An AP operating as untethered uses a wireless connection with a network for data transfer between an AP and the network as well as using the wireless connection or a second wireless connection for data transfer with the client. In both tethered and untethered operation, an AP allows clients to communicate with a network. Clients may be a device or system capable of wireless communication with the AP 300. Non-limiting examples of clients include—desktop computers, laptop computers, PDAs, tablet PCs, servers, switches, wireless access points, etc. Non-limiting examples of wireless communication standards include—802.11a, 802.11b, 802.11g, 802.11n, 802.16, etc.
In some example embodiments, an AP may operate as tethered and untethered simultaneously by operating tethered for a first client and untethered for a second client. In some example embodiments, an AP is not connected to any wired communication or power lines and the AP will operate untethered. The AP may be powered by a battery, a solar cell, wind turbine, etc. In some example embodiments, a plurality of untethered AP may operate as a mesh where data is routed wirelessly along a known, convenient, desired or efficient route. The plurality of APs may be configured to calculate pathways using provided criteria or internal logic included in the APs.
When the AP 300 operates as an untethered wireless AP the first antenna 304-1, the second antenna 304-2, and the radio 314 may operate as the communication interface 326. In these cases there may be no need for additional components for the communication interface 326.
In some example embodiments, an AP has an unobtrusive form factor. An unobtrusive form factor depends on the use of the AP. Non-limiting examples of unobtrusive form factors include—a small size, a uniform shape, no protruding parts, fitting flush to the environment, being similar in shape to other common devices such as a smoke detector, temperature control gauges, light fixtures, etc. In some example embodiments, an AP is designed to work on a ceiling. Non-limiting examples of how an AP is designed for a ceiling include—attachment points on the AP suited for a ceiling, a radiation pattern pointed horizontally with little vertical gain, lightweight for easier installation, etc. In some example embodiments, an AP is designed for usage in different environmental conditions. Non-limiting examples include—a weather resistant casing, circuitry deigned for wide temperature ranges, moisture resistant, etc.
In the example of
In some example embodiments, electrical components included on a PCB are selected and/or arranged to achieve a generally optimal and/or desired radiation pattern for a plurality of antennas included on the PCB. In some example embodiments, a plurality of antennas included on a PCB are interdependently tuned with the material of the PCB, the conductive pathways, and/or electrical components included on the PCB as factors in tuning the antennas to a generally optimal and/or desired radiation pattern.
In the example of
In an example embodiment, the first antenna 304-1 and the second antenna 304-2 may be directional antennas that are interdependently tuned for a desired radiation pattern. In a further example embodiment, a first directional antenna and a second directional antenna are interdependently tuned for a generally optimal radiation pattern.
In an example embodiment, the first antenna 304-1 and the second antenna 304-2 are part of a first plurality of directional antennas, each antenna in the plurality associated with a radio frequency. In some example embodiments, a plurality of directional antennas each associated with a second radio frequency are included in a PCB.
In an example embodiment, the first antenna 304-1 and the second antenna 304-2 are directional to a different degree so the first antenna has a longer and/or narrower radiation pattern compared to the second antenna. In an example embodiment, a plurality of directional antennas are included in a PCB to achieve a desired and/or generally optimal combined radiation pattern. The plurality of directional antennas may be directional to varying degrees to achieve the desired and/or generally optimal combined radiation pattern.
In the example of
In some example embodiments, a radio is designed to operate more effectively at or near a particular frequency or in a particular frequency range. For example, a radio may operate more effectively at 900 MHz, 2.4 GHz, 5 GHz, etc. A radio may also be designed to operate more effectively with a certain transmission standard, data type or format. For example, a radio may operate more effectively with 802.11a, 802.11b, 802.11g, 802.11n, or another wireless standard known or convenient.
In some example embodiments, a radio is considered when interdependently tuning a plurality of antennas to a generally optimal radiation pattern. In some example embodiments, the effectiveness of the radio in detecting and transmitting radio transmissions at a frequency, near a frequency or in a frequency range is taken into consideration when tuning an antenna or interdependently tuning a plurality of antennas.
In the example of
In the example of
In the example of
In some example embodiments, memory and/or a processor are included on a PCB. In some example embodiments, components of the memory and/or processor are included on a PCB.
In the example of
In the example of
In the example of
In the example of
In some embodiments of the example method, measuring a radiation pattern can be done in the H plane and or the E plane. In some embodiments of the example method, measuring the radiation pattern will only be done in one plane or may be done with more weight given to the radiation pattern in one plane and may be determined by the intended usage of the antennas, the antennas orientation, and where the antenna will be mounted.
In the example of
Advantageously, the use of two antenna arrays facilitates providing maximum coverage on two bands, such as by way of example but not limitation, the 802.11b/g and the 802.11a bands. This coverage may be accomplished by positioning the two antenna arrays so that their maximum directivity are at right angles, or approximately at right angles (which may or may not include an exactly 90 degree angle), to each other. In another embodiment, each band may use two antennas with overlapping antenna patterns. The combined pattern may provide excellent horizontal plane directivity.
Advantageously, the antenna arrays may be placed together on a substrate, such as by way of example but not limitation, a PCB assembly. This placement may facilitate the tuning of the interdependent antennas. Advantageously, the substrate and interdependent antennas facilitates the creation of an AP that can be ceiling mounted with limited board space. In an embodiment that includes excellent horizontal plane directivity, this can be valuable in typical indoor setting. The directivity of the interdependent antenna may also facilitate better coverage in other settings, such as out of doors. It may be desirable to include an enclosure on the AP to protect the AP from the elements in an out-of-doors configuration.
An example of a coverage area includes covering a maximum area possible by increasing gain as much as feasible both downward and in a horizontal direction. This may be beneficial in large rooms such as auditoriums. For example, in an auditorium or other high-ceilinged room, if the device is affixed to the ceiling, gain must be sufficiently high in a downward direction, as well as in horizontal directions, to ensure that coverage includes all areas of the auditorium. For example, the highest gain may be desirable in an oblique direction (e.g., approximately in the direction of the baseboard of an auditorium). On the other hand, in typical or relatively low-ceilinged rooms, gain can be relatively high in a more horizontal direction, but relatively low in a downward direction, since a client that is directly under the device will be relatively close to the device. Another example of coverage includes covering a long narrow area by focusing gain in a horizontal direction or directions. This may be beneficial for rooms such as hallways, long rooms, narrow rooms, or when there is interference in a direction. A narrow coverage could also be beneficial for an AP that is not able to be installed at an area where coverage is desired, the AP could be installed away from the area and a positive gain could be focused at the area. Another example of coverage includes mixing narrow coverage with wider coverage and would be beneficial for rooms which have mixed large and narrow areas. Mixing coverage could also be beneficial for an untethered AP where a narrow coverage could be focused at another AP while more completely covering an area close to the AP. The preceding examples are meant as examples only and there are other beneficial uses or combinations of coverage areas.
As used herein, the term “embodiment” means an embodiment that serves to illustrate by way of example but not limitation.
The term “desired radiation pattern” is intended to mean a radiation pattern of an antenna or a combined radiation pattern of a plurality of antennas which is selected for any reason. Factors considered may be internal or external to the antenna or the plurality of antennas. Non-limiting examples of internal factors in a desired radiation pattern include—maximum or approximately maximum possible coverage, noise, legal requirements, cost, intended use, etc.
The term “optimal radiation pattern” is intended to mean a radiation pattern of an antenna or a combined radiation pattern of a plurality of antennas which creates the largest coverage of an horizontal or a vertical area when considering one or more factors external to the antenna or the plurality of antennas. Internal factors may still be used in conjunction with the one or more factors external to the antenna. Non-limiting examples of external factors considered for a “optimal radiation pattern” include—use, operating conditions, environment, interference from other sources, the placement, temperature ranges, the power level, noise, legal requirements, etc.
The term “covered area” and “coverage” are intended to mean an area in which a wireless signal can be detected at a level at which the signal can be practically used. The actual coverage area of an antenna can vary depending on the noise, power, receiving device, application, frequency, interference, etc. In most cases “coverage area” and “coverage” are used herein as a relative term and only the aspects of the antenna need be considered.
The term “network” is any interconnecting system of computers or other electronic devices. Non-limiting examples of networks include—a LAN, a WAN, a MAN, a PAN, the internet, etc.
The term “Internet” as used herein refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (the web). The physical connections of the Internet and the protocols and communication procedures of the Internet are well known to those of skill in the art.
It will be appreciated to those skilled in the art that the preceding examples and embodiments are exemplary and not limiting to the scope of the present invention. It is intended that all permutations, enhancements, equivalents, and improvements thereto that are apparent to those skilled in the art upon a reading of the specification and a study of the drawings are included within the true spirit and scope of the present invention. It is therefore intended that the following appended claims include all such modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.
This application is a divisional of U.S. patent application Ser. No. 11/451,704, filed on Jun. 12, 2006, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2422073 | Bond | Jun 1947 | A |
3641433 | Mifflin et al. | Feb 1972 | A |
4168400 | de Couasnon et al. | Sep 1979 | A |
4176316 | DeRosa et al. | Nov 1979 | A |
4247908 | Lockhart, Jr. et al. | Jan 1981 | A |
4291401 | Bachmann | Sep 1981 | A |
4291409 | Weinberg et al. | Sep 1981 | A |
4409470 | Shepard et al. | Oct 1983 | A |
4460120 | Shepard et al. | Jul 1984 | A |
4475208 | Ricketts | Oct 1984 | A |
4494238 | Groth, Jr. | Jan 1985 | A |
4500987 | Hasegawa | Feb 1985 | A |
4503533 | Tobagi et al. | Mar 1985 | A |
4550414 | Guinon et al. | Oct 1985 | A |
4562415 | McBiles | Dec 1985 | A |
4630264 | Wah et al. | Dec 1986 | A |
4635221 | Kerr | Jan 1987 | A |
4639914 | Winters | Jan 1987 | A |
4644523 | Horwitz | Feb 1987 | A |
4672658 | Kavehrad et al. | Jun 1987 | A |
4673805 | Shepard et al. | Jun 1987 | A |
4707839 | Andren et al. | Nov 1987 | A |
4730340 | Frazier, Jr. | Mar 1988 | A |
4736095 | Shepard et al. | Apr 1988 | A |
4740792 | Sagey et al. | Apr 1988 | A |
4758717 | Shepard et al. | Jul 1988 | A |
4760586 | Takeda | Jul 1988 | A |
4789983 | Acampora et al. | Dec 1988 | A |
4829540 | Waggener, Sr. et al. | May 1989 | A |
4850009 | Zook et al. | Jul 1989 | A |
4872182 | McRae et al. | Oct 1989 | A |
4894842 | Broekhoven et al. | Jan 1990 | A |
4901307 | Gilhousen et al. | Feb 1990 | A |
4933952 | Albrieux et al. | Jun 1990 | A |
4933953 | Yagi | Jun 1990 | A |
4955053 | Siegmund | Sep 1990 | A |
5008899 | Yamamoto | Apr 1991 | A |
5029183 | Tymes | Jul 1991 | A |
5103459 | Gilhousen et al. | Apr 1992 | A |
5103461 | Tymes | Apr 1992 | A |
5109390 | Gilhousen et al. | Apr 1992 | A |
5142550 | Tymes | Aug 1992 | A |
5151919 | Dent | Sep 1992 | A |
5157687 | Tymes | Oct 1992 | A |
5187575 | Lim | Feb 1993 | A |
5231633 | Hluchyj et al. | Jul 1993 | A |
5280498 | Tymes et al. | Jan 1994 | A |
5285494 | Sprecher et al. | Feb 1994 | A |
5329531 | Diepstraten et al. | Jul 1994 | A |
5418812 | Reyes et al. | May 1995 | A |
5450615 | Fortune et al. | Sep 1995 | A |
5465401 | Thompson | Nov 1995 | A |
5469180 | Wiggenhorn | Nov 1995 | A |
5479441 | Tymes et al. | Dec 1995 | A |
5483676 | Mahany et al. | Jan 1996 | A |
5488569 | Kaplan et al. | Jan 1996 | A |
5491644 | Pickering et al. | Feb 1996 | A |
5517495 | Lund et al. | May 1996 | A |
5519762 | Bartlett | May 1996 | A |
5528621 | Heiman et al. | Jun 1996 | A |
5561841 | Markus | Oct 1996 | A |
5568513 | Croft et al. | Oct 1996 | A |
5584048 | Wieczorek | Dec 1996 | A |
5598532 | Liron | Jan 1997 | A |
5630207 | Gitlin et al. | May 1997 | A |
5640414 | Blakeney, II et al. | Jun 1997 | A |
5649289 | Wang et al. | Jul 1997 | A |
5668803 | Tymes et al. | Sep 1997 | A |
5793303 | Koga | Aug 1998 | A |
5794128 | Brockel et al. | Aug 1998 | A |
5812589 | Sealander et al. | Sep 1998 | A |
5815811 | Pinard et al. | Sep 1998 | A |
5828960 | Tang et al. | Oct 1998 | A |
5838907 | Hansen | Nov 1998 | A |
5844900 | Hong et al. | Dec 1998 | A |
5872968 | Knox et al. | Feb 1999 | A |
5875179 | Tikalsky | Feb 1999 | A |
5896561 | Schrader et al. | Apr 1999 | A |
5915214 | Reece et al. | Jun 1999 | A |
5920821 | Seazholtz et al. | Jul 1999 | A |
5933607 | Tate et al. | Aug 1999 | A |
5949988 | Feisullin et al. | Sep 1999 | A |
5953669 | Stratis et al. | Sep 1999 | A |
5960335 | Umemoto et al. | Sep 1999 | A |
5982779 | Krishnakumar et al. | Nov 1999 | A |
5987062 | Engwer et al. | Nov 1999 | A |
5987328 | Ephremides et al. | Nov 1999 | A |
6005853 | Wang et al. | Dec 1999 | A |
6011784 | Brown et al. | Jan 2000 | A |
6078568 | Wright et al. | Jun 2000 | A |
6088591 | Trompower et al. | Jul 2000 | A |
6119009 | Baranger et al. | Sep 2000 | A |
6119032 | Martin et al. | Sep 2000 | A |
6160804 | Ahmed et al. | Dec 2000 | A |
6188649 | Birukawa et al. | Feb 2001 | B1 |
6208629 | Jaszewski et al. | Mar 2001 | B1 |
6208841 | Wallace et al. | Mar 2001 | B1 |
6218930 | Katzenberg et al. | Apr 2001 | B1 |
6240078 | Kuhnel et al. | May 2001 | B1 |
6240083 | Wright et al. | May 2001 | B1 |
6256300 | Ahmed et al. | Jul 2001 | B1 |
6256334 | Adachi | Jul 2001 | B1 |
6285662 | Watanabe et al. | Sep 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6336035 | Somoza et al. | Jan 2002 | B1 |
6336152 | Richman et al. | Jan 2002 | B1 |
6347091 | Wallentin et al. | Feb 2002 | B1 |
6356758 | Almeida et al. | Mar 2002 | B1 |
6393290 | Ufongene | May 2002 | B1 |
6404772 | Beach et al. | Jun 2002 | B1 |
6473449 | Cafarella et al. | Oct 2002 | B1 |
6493679 | Rappaport et al. | Dec 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6512916 | Forbes, Jr. | Jan 2003 | B1 |
6580700 | Pinard et al. | Jun 2003 | B1 |
6587680 | Ala-Laurila et al. | Jul 2003 | B1 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6631267 | Clarkson et al. | Oct 2003 | B1 |
6659947 | Carter et al. | Dec 2003 | B1 |
6661787 | O'Connell et al. | Dec 2003 | B1 |
6687498 | McKenna et al. | Feb 2004 | B2 |
6725260 | Philyaw | Apr 2004 | B1 |
6747961 | Ahmed et al. | Jun 2004 | B1 |
6839338 | Amara et al. | Jan 2005 | B1 |
6879812 | Agrawal et al. | Apr 2005 | B2 |
6933909 | Theobold | Aug 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6978301 | Tindal | Dec 2005 | B2 |
7020773 | Otway et al. | Mar 2006 | B1 |
7110756 | Diener | Sep 2006 | B2 |
7190974 | Efland et al. | Mar 2007 | B2 |
7286086 | Fang et al. | Oct 2007 | B2 |
7567213 | Liu | Jul 2009 | B2 |
7844298 | Riley | Nov 2010 | B2 |
7865213 | Riley | Jan 2011 | B2 |
20010020920 | Shigihara | Sep 2001 | A1 |
20020052205 | Belostotsky et al. | May 2002 | A1 |
20020095486 | Bahl | Jul 2002 | A1 |
20020101868 | Clear et al. | Aug 2002 | A1 |
20020174137 | Wolff et al. | Nov 2002 | A1 |
20030014646 | Buddhikot et al. | Jan 2003 | A1 |
20030018889 | Burnett et al. | Jan 2003 | A1 |
20030107590 | Levillain et al. | Jun 2003 | A1 |
20030174706 | Shankar et al. | Sep 2003 | A1 |
20040001467 | Cromer et al. | Jan 2004 | A1 |
20040025044 | Day | Feb 2004 | A1 |
20040064560 | Zhang et al. | Apr 2004 | A1 |
20040095914 | Katsube et al. | May 2004 | A1 |
20040108957 | Umehara et al. | Jun 2004 | A1 |
20040120370 | Lupo | Jun 2004 | A1 |
20040143428 | Rappaport et al. | Jul 2004 | A1 |
20040230370 | Tzamaloukas | Nov 2004 | A1 |
20040259555 | Rappaport et al. | Dec 2004 | A1 |
20050030929 | Swier et al. | Feb 2005 | A1 |
20050058132 | Okano et al. | Mar 2005 | A1 |
20050059405 | Thomson et al. | Mar 2005 | A1 |
20050059406 | Thomson et al. | Mar 2005 | A1 |
20050064873 | Karaoguz et al. | Mar 2005 | A1 |
20050068925 | Palm et al. | Mar 2005 | A1 |
20050073980 | Thomson et al. | Apr 2005 | A1 |
20050128989 | Bhagwat et al. | Jun 2005 | A1 |
20050157730 | Grant et al. | Jul 2005 | A1 |
20050180358 | Kolar et al. | Aug 2005 | A1 |
20050181805 | Gallagher | Aug 2005 | A1 |
20050193103 | Drabik | Sep 2005 | A1 |
20050223111 | Bhandaru et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050259597 | Benedetto et al. | Nov 2005 | A1 |
20050273442 | Bennett et al. | Dec 2005 | A1 |
20050276218 | Ooghe et al. | Dec 2005 | A1 |
20060045050 | Floros et al. | Mar 2006 | A1 |
20060200862 | Olson et al. | Sep 2006 | A1 |
20070287390 | Murphy et al. | Dec 2007 | A1 |
20080036657 | Oomuro | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
WO-9403986 | Feb 1994 | WO |
WO-9911003 | Mar 1999 | WO |
WO-03085544 | Oct 2003 | WO |
WO-2004095192 | Nov 2004 | WO |
WO-2004095800 | Nov 2004 | WO |
Entry |
---|
Acampora and Winters, IEEE Communications Magazine, 25(8):11-20 (1987). |
Acampora and Winters, IEEE Journal on selected Areas in Communications. SAC-5:796-804 (1987). |
Bing and Subramanian, IEEE, 1318-1322 (1997). |
Durgin, et al., “Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz”, IEEE Transactions on Communications, vol. 46, No. 11, Nov. 1998. |
Fortune et al., IEEE Computational Science and Engineering, “Wise Design of Indoor Wireless Systems: Practical Computation and Optimization”, pp. 58-68 (1995). |
Freret et al., Applications of Spread-Spectrum Radio to Wireless Terminal Communications, Conf. Record, Nat'l Telecom. Conf., Nov. 30-Dec. 4, 1980. |
Geier, Jim, Wireless Lans Implementing Interoperable Networks, Chapter 3 (pp. 89-125) Chapter 4 (pp. 129-157) Chapter 5 (pp. 159-189) and Chapter 6 (pp. 193-234), 1999, United States. |
Ho et al., “Antenna Effects on Indoor Obstructed Wireless Channels and a Deterministic Image-Based Wide-Based Propagation Model for In-Building Personal Communications Systems”, International Journal of Wireless Information Networks, vol. 1, No. 1, 1994. |
Kim et al., “Radio Propagation Measurements and Prediction Using Three-Dimensional Ray Tracing in Urban Environments at 908 MHz and 1.9 GHz”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999. |
Kleinrock and Scholl, Conference record 1977 ICC vol. 2 of 3, Jun. 12-15 Chicago Illinois “Packet Switching in radio Channels: New Conflict-Free Multiple Access Schemes for a Small Number of data Useres”, (1997). |
LAN/MAN Standards Committee of the IEEE Computer Society, Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Layer Extension in the 2.4 GHz Band, IEEE Std. 802.11b (1999). |
Okamoto and Xu, IEEE, Proceeding so of the 13th Annual Hawaii International Conference on System Sciences, pp. 54-63 (1997). |
Panjwani et al., “Interactive Computation of Coverage Regions for Wireless Communication in Multifloored Indoor Environments”, IEEE Journal on Selected Areas in Communications, vol. 14, No. 3, Apr. 1996. |
Perram and Martinez, “Technology Developments for Low-Cost Residential Alarm Systems”, Proceedings 1997 Camahan Conference on Crime Countermeasures, Apr. 6-8, pp. 45-50 (1977). |
Piazzi et al., “Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999. |
Puttini, R., Percher, J., Me, L., and de Sousa, R. 2004. A fully distributed IDS for MANET. In Proceedings of the Ninth international Symposium on Computers and Communications 2004 vol. 2 (Iscc″04)—vol. 02 (Jun. 28-Jul. 1, 2004). ISCC. IEEE Computer Society, Washington, DC, 331-338. |
Seidel et al., “Site-Specific Propagation Prediction for Wireless In-Building Personal Communications System Design”, IEEE Transactions on Vehicular Technology, vol. 43, No. 4, Nov. 1994. |
Skidmore et al., “Interactive Coverage Region and System Design Simulation for Wireless Communication Systems in Multi-floored Indoor Environments, SMT Plus” IEEE ICUPC '96 Proceedings (1996). |
Ullmo et al., “Wireless Propagation in Buildings: A Statistic Scattering Approach”, IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999. |
Co-pending U.S. Appl. No. 11/451,704, filed Jun. 12, 2006. |
Co-pending U.S. Appl. No. 12/629,867, filed Dec. 2, 2009. |
Notice of Allowance Mailed Aug. 6, 2010, in Co-pending U.S. Appl. No. 11/451,704, filed Jun. 12, 2006. |
Non-Final Office Action mailed Feb. 22, 2010, in Co-pending U.S. Appl. No. 11/451,704. |
Non-Final Office Action dated Aug. 7, 2009, in co-pending U.S. Appl. No. 11/451,704, filed Jun. 12, 2006. |
Non-Final Office Action mailed May 3, 2010, in Co-pending U.S. Appl. No. 12/629,867, filed Dec. 2, 2009. |
Number | Date | Country | |
---|---|---|---|
20100103059 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11451704 | Jun 2006 | US |
Child | 12603542 | US |