1. Field of the Invention
The present invention relates to an x-ray target assembly. The x-ray target assembly preferably is used with a charged particle accelerator in a radiation therapy machine.
2. Discussion of Related Art
It is known to produce x-rays by bombarding an x-ray target assembly with electrons emitted from a charged particle accelerator.
Within the interior of the housing 102, a graphite cylindrical electron absorber 104 is centrally located within the housing 102 and is supported upon an annular bottom piece 106 of the housing 102. The annular bottom piece 106 is attached to bottom side edges of the housing 102 via mechanical fasteners, such as screws, inserted into openings 108 of the piece 106 and openings of the housing 102.
As shown in
A gold target 116 is inserted into the central opening 114 and attached to the edges of the opening 114 via a braze or weld joint. The water within the recess 110 cools the underside of the gold target 116 when the target 116 is being bombarded by electrons.
One disadvantage of the above described anode is that fatigue or stress cracks can be formed in the gold target 116 when bombarded by pulsed electron beams over a period of time. Such cracks can lead to water leaks in the x-ray target assembly 100 which renders the x-ray target assembly 100 inoperable. These water leaks can also cause considerable damage to other components in the radiation therapy machine.
Another disadvantage of the x-ray target assembly 100 described above is that there is a possibility that galvanic corrosion of the braze alloy will occur upon contact of the braze alloy with water. Such corrosion can result in water leaks forming in the x-ray target assembly 100. Such corrosion can be accelerated when the x-ray target assembly 100 is in an environment of ionizing radiation.
One aspect of the present invention regards an x-ray target assembly including a housing having a recess, a cooling fluid contained within the recess and an x-ray target attached to the housing, wherein the x-ray target does not directly contact the cooling fluid.
A second aspect of the present invention regards an x-ray target assembly including a housing having a recess, an x-ray target attached to the housing and a cooling fluid contained within the recess, wherein the cooling fluid is sealed within the recess via a joint not susceptible to galvanic corrosion.
A third aspect of the present invention regards a joint assembly that includes a first piece made of a first material and a second piece made of a second material that is different than the first material, where the first piece is separated from the second piece by a gap. A high quality electron beam weld joint is formed between the first piece and the second piece within the gap.
A fourth aspect of the present invention regards a method of forming a high quality electron beam joint by positioning a first piece made of a first material from a second piece made of a second material that is different than the first material so that a gap is formed therebetween. Applying an electron beam to the gap so that a high quality weld joint is formed that is not susceptible to galvanic corrosion.
One or more aspects of the present invention provide the advantage of reducing stress related cracks in an x-ray target assembly.
One or more aspects of the present invention provide the advantage of reducing the risk of leakage of cooling fluid within the x-ray target assembly.
Further characteristics and advantages of the present invention ensue from the following description of exemplary embodiments by the drawings.
An x-ray target assembly to be used for various applications, including medical radiation therapy, according to an embodiment of the present invention will be described with reference to
The x-ray target assembly 200 includes a stainless steel cylindrical housing 202 that is supported by a pair of tubes 103. Within the interior of the housing 202, a graphite cylindrical electron absorber 104 is centrally located within the housing 202 and is supported upon an annular bottom piece 106 of the housing 202. The annular bottom piece 106 is attached to the housing 202 via mechanical fasteners, such as screws, inserted into openings 108 of the piece 106 and openings of the housing 202.
As shown in
The copper top cover 212 is annular-like in shape having an outer diameter of approximately 30 mm. The top cover 212 has a maximum thickness of approximately 4 mm. As shown in
Once the top cover 212 is placed on top of the housing 202 a recess 217 is formed as the sum of the recesses 210 and 213. The combined recess 217 is filled with a cooling fluid, such as water, via tubes 103a-b in the same manner described previously that recess 110 is filled with water. A tungsten x-ray target in the form of cylindrical disk 216 is inserted into the central circular recess 215. The disk 216 has a diameter of approximately 6 mm and a thickness of approximately 1 mm. The disk 216 is attached to the edges and bottom of the recess 215 via a braze material. Since the water within the recess 217 does not directly contact the tungsten disk 216, the water indirectly cools the underside of the tungsten disk 216 via the top cover 212 when the disk 216 is being bombarded by electrons. The top cover 212 acts as a heat sink and as a barrier that prevents the brazing material from undergoing galvanic corrosion. Furthermore, any fatigue or stress cracks that occur in the tungsten disk 216, which is a rarity in itself, will not result in leakage of the water since the top cover 212 and the housing 202 encase the water.
Note that the tungsten material of disk 216 is mechanically superior to the gold material of disk 116 in that it has a four times higher fatigue strength and a three times higher melting temperature. The amount of tungsten material used is selected so as to produce the same output as the gold x-ray target 116 described previously.
As schematically shown in
In practice, the x-ray target assembly 200 according to the present invention compares favorably with the known x-ray target assembly 100 discussed previously with respect to
Within the scope of the present invention, further embodiment variations of course also exist besides the explained example.
Number | Name | Date | Kind |
---|---|---|---|
4149310 | Nippert | Apr 1979 | A |
4185365 | Hueschen et al. | Jan 1980 | A |
4224273 | Magendans et al. | Sep 1980 | A |
4296804 | Press et al. | Oct 1981 | A |
4331902 | Magendans et al. | May 1982 | A |
4482837 | Koizumi et al. | Nov 1984 | A |
4928296 | Kadambi | May 1990 | A |
5008918 | Lee et al. | Apr 1991 | A |
5397050 | Mueller | Mar 1995 | A |
5768338 | Kuroda et al. | Jun 1998 | A |
6393099 | Miller | May 2002 | B1 |
6430260 | Snyder | Aug 2002 | B1 |
6580780 | Miller | Jun 2003 | B1 |
20020085676 | Snyder | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
3124913 | Jan 1983 | DE |
56086448 | Jul 1981 | JP |
WO 2002039792 | May 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040057555 A1 | Mar 2004 | US |