Exemplary embodiments of the present invention relate to tuning-fork-type vibrating reeds using gallium phosphate (GaPO4) as piezoelectric material, piezoelectric vibrators, angular-rate sensors, and electronic devices.
The related art includes tuning-fork-type quartz resonators having tuning-fork-type quartz vibrating reeds that are used for vibrators to generate predetermined frequencies by bending vibration in clocks, electronic devices, and the like. The dependence of the frequency of a tuning-fork-type quartz resonator on temperature is small. For example, frequency-temperature characteristics (i.e. a change in frequency with a change in temperature) of a tuning-fork-type quartz resonator (not shown) are shown in
In order to further reduce the change in frequency with the change in temperature, as disclosed in related art document Japanese Unexamined Patent Application Publication No. 54-40589, two vibrations generated by a tuning-fork-type quartz resonator are utilized for coupling two vibrations.
In another case as shown in related art document Japanese Unexamined Patent Application Publication No. 52-39391, two tuning-fork-type quartz vibrating reeds having different frequency-temperature characteristics, are mounted on a quartz substrate. In a tuning-fork-type quartz resonator using these tuning-fork-type quartz vibrating reeds, the difference in the two frequencies of the quartz vibrating reeds is used as a reference frequency.
Related art document (hereinafter “Delmas”), L. Delmas, F. Sthal, E. Bigler, B. Dulmet, and R. Bourquin, “Temperature-Compensated Cuts For Vibrating Beam Resonators Of Gallium Orthophosphate GaPO4” Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition, pp. 663-667, discloses that a GaPO4 substrate can be used as an alternate of a quartz substrate.
However, in the tuning-fork-type quartz resonator disclosed in related art document Japanese Unexamined Patent Application Publication No. 54-40589, since the frequency-temperature characteristics significantly depend on the coupling level of the two vibrations, the productivity is low. Furthermore, the vibration readily leaks to a base. This results in a difficulty in supporting.
Since the tuning-fork-type quartz resonator disclosed in related art document Japanese Unexamined Patent Application Publication No. 52-39391 uses two tuning-fork-type quartz resonators, it has disadvantages of a high cost in addition to the difficulty in a reduction in size.
The resonator disclosed in Delmas has a simple vibrating beam reed. The calculation for the resonator having the vibrating beam reed is performed, but the calculation for the tuning-fork-type resonator having tuning-fork-type vibrating reeds is not performed. A theoretical formula used in the calculation takes only an elastic constant into account. Since a piezoelectric constant and a dielectric coefficient in a practical resonator are not taken into account, the calculation cannot define an optimized practical condition. In particular, GaPO4 has a larger electromechanical coupling factor than that of quartz. Therefore, the optimum condition of a practical tuning-fork-type resonator having a piezoelectric constant and a dielectric coefficient is significantly different from the calculated value. As a result, desired frequency-temperature characteristics may not be addressed or achieved.
In order to overcome the above discussed and/or other problems described above, an object of exemplary embodiments of the present invention is to provide a tuning-fork-type vibrating reed having good frequency-temperature characteristics in a broad temperature range, i.e. to provide a tuning-fork-type vibrating reed, a piezoelectric vibrator, an angular-rate sensor, and an electronic device which exhibit small changes in frequency over a broad temperature range.
The inventors have investigated frequency-temperature characteristics of tuning-fork-type vibrating reeds prepared by cutting a GaPO4 piezoelectric substrate at various angles, and have found that satisfactory frequency-temperature characteristics are addressed or achieved at a condition different from that disclosed in Delmas. Exemplary embodiments of the present invention have been completed based on this finding.
A tuning-fork-type vibrating reed according to exemplary embodiments of the present invention includes a GaPO4 piezoelectric material and a pair of arms having the thickness in Z′-axis direction, the width in X-axis direction, and the length in Y′-axis direction. The X-axis, the Y′-axis, and the Z′-axis are defined by rotating around the X-axis among the crystal X-axis, Y-axis, and Z-axis of the GaPO4 by an angle between 7.7° and 11.3° measured clockwise as viewed from the origin looking in the positive X-axis direction.
Preferably, the angle is between 8.4° and 10.7° measured clockwise as viewed from the origin looking in the positive X-axis direction.
A tuning-fork-type vibrating reed according to exemplary embodiments of the present invention includes a GaPO4 piezoelectric material and a pair of arms having the thickness in Z′-axis direction, the width in X-axis direction, and the length in Y′-axis direction. The X-axis, the Y′-axis, and the Z′-axis are defined by rotating around the X-axis among the crystal X-axis, Y-axis, and Z-axis of the GaPO4 by an angle between 52.9° and 54.4° measured clockwise as viewed from the origin looking in the positive X-axis direction.
A piezoelectric vibrator according to exemplary embodiments of the present invention includes the above-mentioned tuning-fork-type vibrating reed.
An angular-rate sensor according to exemplary embodiments of the present invention includes the above-mentioned tuning-fork-type vibrating reed.
An electronic device according to exemplary embodiments of the present invention includes the above-mentioned tuning-fork-type vibrating reed.
Exemplary embodiments of a tuning-fork-type resonator, a piezoelectric vibrator, an angular-rate sensor, and an electronic device according to exemplary embodiments of the present invention will be described with reference to the attached drawings.
The tuning-fork-type vibrating reed 10 is arranged on the piezoelectric substrate 13 so that the direction in which a pair of arms 12a and 12b line up, i.e. the width direction of arms 12a and 12b is the X′-axis; the thickness direction of the arms 12a and 12b is the Z′-axis; and the direction toward the ends 14a and 14b of the arms 12a and 12b, i.e. the longitudinal direction of the arms 12a and 12b is the Y′-axis.
The tuning-fork-type vibrating reed 10 has a substantially rectangular base 11 and two arms 12a and 12b extending in the Y′-axis direction. The arms 12a and 12b vibrate in flexure in opposite phase on the X′-Y′ plane. In
Next, an example of electrode of the tuning-fork-type vibrating reed 10 will be described. FIGS. 3(A) and (B) are schematics showing the tuning-fork-type vibrating reed.
As shown in FIGS. 3(A) and (B), driving electrodes 45 having two electrode patterns 40 at a predetermined distance of a gap 27 are formed in the centers on the top face 25 and bottom face 26 of the arms 22 and 23 of the tuning-fork-type vibrating reed 10. In FIGS. 3(A) and (B), in order to distinguish the two electrode patterns 40 from each other, one electrode pattern 40 is illustrated with lines sloping downward to the right and the other electrode pattern 40 is illustrated with lines sloping upward to the right.
The driving electrodes 45 are disposed in the centers on the top face 25 and bottom face 26 of the arms 22 and 23 of the tuning-fork-type vibrating reed 10. The driving electrodes 45 on the top face 25 and the driving electrodes 45 on the bottom face 26 are electrically connected by conducting electrodes 46 having electrode patterns 40 disposed at edges 251, 252, 253, and 254 of the top face 25, margins 261, 262, 263, and 264 of the bottom face 26, and edges 271 and 272.
On the base 24, the electrode patterns 40 are used as supporting electrodes 48 (or referred to mounting portions) and are electrically connected to joint terminals (not shown) with solder or a conductive adhesive. In such a state, when an AC voltage is applied to the driving electrodes 45 via the joint terminals, the arms 22 and 23 vibrate at a predetermined frequency. In this case, the conducting electrodes 46 excite the tuning-fork-type vibrating reed 10. Furthermore, weights 49 for frequency adjustment are provided at end portions of the arms 22 and 23 by laser trimming or the like.
A piezoelectric vibrator using a tuning-fork-type vibrating reed according to exemplary embodiments of the present invention will now be described with reference to
The cylindrical piezoelectric vibrator will now be described. As shown in
The tuning-fork-type vibrating reed 10 is connected to the internal terminals 31 at the end of the base 21 with a bonding material (not shown) such as solder. The plug 30 having the internal terminals 31 connected to the tuning-fork-type vibrating reed 10 is pressed into the case 35 to maintain the air tightness.
Next, the chip-type piezoelectric vibrator will be described. As shown in
In the cylindrical piezoelectric vibrator 100 and chip-type piezoelectric vibrator 500 according to one of the exemplary embodiments, since the tuning-fork-type vibrating reed 10 described in the above-mentioned exemplary embodiments is used, the piezoelectric vibrators have the same effects as those of the tuning-fork-type vibrating reed. In particular, a piezoelectric vibrator which can reduce the shift of the frequency from the maximum frequency used as a reference in the temperature range of −40° C. to +120° C. [(frequency variation)=(maximum frequency shift)−(minimum frequency shift)] can be provided.
In the above description on the structure of the piezoelectric vibrator 100 and the chip-type piezoelectric vibrator 500, the tuning-fork-type vibrating reed 10 is stored in the case 35 or the storage container 102. The case 35 and the storage container 102 can additionally store at least a circuit component (not shown) such as a circuit element that drives the tuning-fork-type vibrating reed 10 for providing a piezoelectric oscillator.
Next, an example of an angular-rate sensor using a tuning-fork-type vibrating reed according to exemplary embodiments of the present invention will be described with reference to the attached drawing.
As shown in
A structure of the angular-rate sensor will now be described. As shown in
Next, the operation of the angular-rate sensor will be described. In a rotation system around Z′-axis (central axis), the arms 52a and 52b are vibrated by the excitation electrodes 58a and 58b so as to each have a completely opposite phase in the X′-Y′ plane (shown as A1 and A2). In this state, when an angular rate of rotation ω1 is applied around the Z′-axis, forces F1 and F2 work on the arms 52a and 52b, respectively, in the opposite directions along the Y′-axis due to the Coriolis force. As a result, momenta M1 and M2 work at both the ends of the base 53. The momenta M1 and M2 generate bending vibration B in the X′-Y′ plane at the supporting portion 56. The angular rate of rotation c 1 is measured by detecting the bending vibration B by the detection electrode 59. The angular rate of rotation can be also measured by detecting the angular rate of rotation ω1′ in the counter direction of the angular rate of rotation ω1.
When the tuning-fork-type vibrating reed 10a shows an unstable frequency, both the driving vibration frequency and the detected vibration frequency of the tuning-fork-type vibrating reed change with a change in temperature. As a result, the detection sensitivity changes. In other words, the detection sensitivity depends on a change in difference between the driving vibration frequency and the detected vibration frequency. Due to such a change in detection sensitivity, an electric signal (referred to leakage output) as if a Coriolis force worked on may be detected despite that an angular rate of rotation is not applied. However, since the angular-rate sensor according to the exemplary embodiment has stability of frequency to temperature, a change in the leakage output with the change in temperature can be decreased. It is known that the electromechanical coupling coefficient of GaPO4 is larger than that of quartz. Therefore, the electric signal output from an elemental substance can be increased and the load on an amplifier in a detection circuit can be reduced.
In the above description on the angular-rate sensor 1000, only the tuning-fork-type vibrating reed 10a is stored in the storage container. However, circuit components can be also stored in this storage container to provide a circuit integrated angular-rate sensor. As shown in a circuit block diagram of the circuit integrated angular-rate sensor 2000 in
In the above description on the angular-rate sensor 1000, the angular rate of rotation ω1 is applied around the Z′-axis. However, the angular rate of rotation around another axis may be detected. For example, by forming detection electrodes (not shown) at the side faces 63 of the arms 52a and 52b of the tuning-fork-type vibrating reed 10a shown in
Furthermore, electronic devices having tuning-fork-type vibrating reeds according to the exemplary embodiment include oscillators generating reference frequencies, mobile phones, and digital cameras. Each electronic device can generate a stabilized frequency without a temperature-compensating circuit even if the electronic device provided with the tuning-fork-type vibrating reed according to the above-mentioned exemplary embodiment is used in a broad temperature range. Therefore, an increase in the number of components of the circuit can be avoided and a process is simplified. Consequently, the manufacturing cost is reduced. Furthermore, the frequency variation caused by the allowance range in the manufacturing process, not the change in frequency with a change in temperature, can also readily modified by peripheral circuits because of the high electromechanical coupling coefficient.
As described above, according to exemplary embodiments of the present invention, a tuning-fork-type vibrating reed having stable frequency-temperature characteristics can be provided by using a GaPO4 substrate cut at a particular angle. Therefore, a small sized tuning-fork-type vibrating reed having stable frequency-temperature characteristics can be readily provided without complicated mode coupling or a plurality of vibrating reeds.
Number | Date | Country | Kind |
---|---|---|---|
2004-023935 | Jan 2004 | JP | national |