The present invention is directed towards impedance matching circuits and more particularly, adaptive impedance matching circuits to improve transceiver operation in a variety of scenarios.
As more technology and features are incorporated into small packages, engineering teams must get more and more creative, especially in the face of lagging miniaturization of parts and components. One of the areas that engineers focus on is multipurpose circuitry or, circuitry that meets a variety of functions. A good example of this focus is with regards to antenna matching circuits within cellular telephone devices.
Cellular telephone devices have migrated from single cellular technology supporting devices to multi-cellular technology devices integrating a variety of other consumer features such as MP3 players, color displays, games, etc. Thus, not only are the cellular telephone devices required to communicate at a variety of frequencies, they are also subjected to a large variety of use conditions. All of these factors can result in a need for different impedance matching circuits for the antenna. However, by utilizing tunable components, a single matching circuit can be used under a variety of circumstances. Tunable matching circuits generally operate to adjust the impedance match with an antenna over a frequency range to maximize the output power. However, difficulties arise when attempting to tune the matching circuit for signal reception. What is needed in the art is an adaptive impedance matching module that can operate to optimize performance of both the transmitter and the receiver under a variety of circumstances. Further, what is needed is an adaptive impedance matching module that optimizes performance of the transceiver based on optimizing the operation in view of a figure of merit.
In general, embodiments of the invention include a tunable matching circuit and an algorithm for adjusting the same. More particularly, the tuning circuit is adjusted primarily based on transmitter oriented metrics and is then applied to attain a desired tuning for both transmitter and receiver operation. In a time division multiplexed (TDM) system in which the transmitter and the receiver operate at different frequencies but are only keyed in their respective time slots (i.e. transmit time slot and receive time slot), this is accomplished by identifying an optimal tuning for the transmitter and then adding an empirically derived adjustment to the tuning circuit in receive mode. In a frequency division multiplexed (FDM) system in which the transmitter and receiver operate simultaneously and at different frequencies, this is accomplished by identifying a target operation for the transmitter, and then adjusting the tuning circuit first to the target value for the transmitter and then adjusting the values to approach a compromised value proximate to an equal or desired target value for the receiver.
An exemplary embodiment of the present invention provides a method for controlling a matching circuit for interfacing an antenna with a transceiver. The matching circuit includes one or more tunable components. The tuning of the matching circuit is based on a figure of merit that incorporates one or more operation metrics. One aspect of the present invention is that the operation metrics can be transmitter based but still provide desired adjustment results for receiver operation. The operation metric(s) is monitored and measured and then compared to the figure of merit. If the desired operation is not attained, the variable component(s) of the matching circuit is adjusted using one or more of a variety of techniques to attain the figure of merit. This process is performed to maintain operation at the figure of merit.
In one embodiment of the invention more particularly suited for TDM systems, an offset, scaling factor, translation or other change or modification is applied to the adjustments of the variable components when switching from the transmit mode to the receive mode. This translation is a function of the values obtained while adjusting during the transmit time slot. The translation is then removed upon return to the transmitter mode and the adjustment process is resumed.
In another embodiment of the invention particularly suited for FDM systems, the figure of merit not only incorporates the transmit metrics, but also incorporates an element to attain a compromise between optimal transmitter and optimal receiver operation. This is accomplished by identifying a target operation goal, such as a desired transmitter and receiver reflection loss and then identifying an operational setting that is a close compromise between the two. This embodiment thus incorporates not only transmitter metrics but also tuning circuit settings or preferences into the algorithm. The tuning preferences can be empirically identified to ensure the desired operation.
These and other aspects, features and embodiments of the present invention will be more appreciated upon review of the figures and the detailed description.
The present invention, as well as features and aspects thereof, is directed towards providing an impedance matching circuit, module or component that in response to sensing the matching condition by monitoring one or more metrics or parameters of the transmitter, can be adjusted to optimize the match.
More specifically, embodiments of the present invention include adaptive impedance matching circuits, modules, IC's etc., that operate to sense the matching condition of the transmit signal or other transmitter related metric and then optimizes the matching characteristics by adjusting the values of one or more tunable devices in view of attaining or reaching a figure of merit. The figure of merit can be based on a variety of elements, such as the input return loss, output power, current drain, linearity metrics, as well as others. In the embodiments of the present invention that are presented herein, the figure of merit is typically described or defined as being based on the input return loss. However, it is to be understood that this is just a non-limiting example of the present invention, and although it may in and of itself be considered as novel, other transmitter, or non-receiver, related metrics may be incorporated into the figure of merit in addition to or in lieu of the input return loss or reflection loss.
In an exemplary embodiment, an adaptive impedance matching module (AIMM) detects transmitter related metrics and optimizes the matching circuit keyed on the transmit signal. A benefit associated with focusing on the transmit signal, as well as other transmitter metrics, is that the transmit signal is higher in power than the receive signal and thus, is easier to detect. However, it will be appreciated by those skilled in the art that it is desirable to improve the matching conditions for both the transmit signal and the receive signal. Advantageously, the present invention operates to optimize a figure of merit that achieves a desired operation of both signals even though the matching adjustments performed by the AIMM are only based on sensing the transmitter related metrics.
One embodiment of the invention is particularly well suited for operating in a time division multiplexed (TDM) system. In a TDM system, the radio transmits and receives in different time slots. Typically, the transmitter and receiver also operate on different frequencies; however, it will be appreciated that some systems utilize the same frequency for transmission and reception. Nonetheless, in a TDM system, the transmitter and receiver are not active at the same time. In this environment, the AIMM can be adjusted to optimal settings for the transmitter during a transmit time slot and then the AIMM can be adjusted to optimal setting for the receiver during the receive time slot. As such, the AIMM tuner can be set differently during transmit and receive time slots. During the transmit time slot, an adjustment algorithm is applied to determine the appropriate settings of the AIMM to optimize the match or attain a figure of merit that results in achieving or approaching a desired level of operation. Because any frequency offset between the transmit signal and the receive signal is known, an adjustment or modification of the setting of the AIMM in the form of a translation or some other function is applied to the AIMM during the receive time slot. The adjustment improves the matching characteristics at the receiver frequency based on knowledge determined during the transmit time slot and the general operation of the receiver. During the next transmit time slot, the translation is removed from the AIMM and the adjustment algorithm regains control of the AIMM. Upon returning to the receive time slot, the modification can be reapplied or, if the settings during the transmit time slot have been changed, then the new settings can be modified for the subsequent receive time slot.
The adjustment applied to the AIMM during the receive time slot can be obtained in a variety of manners. For instance, in one embodiment the adjustment may be a translation derived empirically by characterizing the tuner at the transmitter and receiver frequencies and then deriving a mapping function to describe the translation. Alternatively, the translation may be derived by using the known (or theoretical) S-parameters of the tuner network.
Another embodiment of the present invention is particularly suited for a Frequency Division Multiplexed (FDM) system. In an FDM system, the radio transmits and receives at the same time but at different frequencies. Unlike the embodiment suited for a TDM application, the FDM application requires the AIMM to use the same tuning condition for both transmitter and receiver operation. In this embodiment, the tuner is adjusted to provide a desired compromise between matching at the transmit frequency and matching at the receive frequency. It will be appreciated that this compromise could be attained by simply defining a figure of merit that incorporates both a transmitter metric and a receiver metric. However, as previously mentioned, the receive signal is typically lower than the transmit signal and as such, it may be difficult to accurately sense and use as a metric.
Thus, in this embodiment, non-receiver related metrics are used to find a desired compromised state for tuning the AIMM. It will be appreciated that the desired compromised state can vary based on embodiment and operational requirements. For instance, in some embodiments, transmission of data may be more important than reception and as such, preference may be given to optimizing the transmitter. Such a situation may exist in an emergency radio system that is used by people in the field and that need to report back to a central location, but are not necessarily dependent upon information from that central location. In other embodiments, the reception of data may be more important than the transmission. For instance, the reception of weather related information as an emergency warning system. In such an embodiment, preference may be given to optimizing the receiver. Yet in other embodiments, both the reception and transmission of data may be equally important and as such, a setting that gives a compromised performance or attempts to equalize the performance of both the transmitter and receiver is desired. Such an embodiment is typical of cellular telephone operation.
The FDM suitable embodiments of the present invention operate to obtain a desired level of operation based on one or more transmitter related metrics, and also incorporate known characteristics about the tuning circuits to achieve the desired operating state. The desired operating state typically reflects a state of operation that is a compromise from the optimal states for the transmitter and receiver. For instance, one embodiment of the present invention may include the tuning states of the tunable devices in the matching circuit within a transmit signal based figure of merit. Advantageously, this aspect of the present invention enables improved performance in the receive band without having to take a receiver measurement.
Another embodiment of the invention deployable within an FDM environment is to tune the matching circuit to a figure of merit that is based on a vector measurement of the transmitter reflection coefficient. In this embodiment, the phase information in the vector measurement is incorporated into the figure of merit and the optimal compromise between the transmitter and receiver operation occurs at a particular phase of the transmitter reflection coefficient.
Now turning to the figures, the various embodiments, features, aspects and advantages of the present invention are presented in more detail.
Next, a current figure of merit (FOM) is calculated 320. The current FOM is based on the one or more performance metrics, as well as other criteria. The current FOM is then compared to a target FOM 325. The target FOM is the optimal or desired performance requirements or objective for the system. As such, the target FOM can be defined by a weighted combination of any measurable or predictable metrics. For instance, if it is desired to maximize the efficiency of the transmitter, the target FOM can be defined to result in tuning the matching network accordingly. Thus, depending on the goal or objective, the target FOM can be defined to tune the matching network to achieve particular goals or objectives. As a non-limiting example, the objectives may focus on total radiated power (TRP), total isotropic sensitivity (TIS), efficiency and linearity. Furthermore, the target FOM may be significantly different for a TDM system and an FDM system. It should be understood that the target FOM may be calculated or selected on the fly based on various operating conditions, prior measurements, and modes of operation or, the target FOM could be determined at design time and hardcoded into the AIMM 100.
If it is determined that the current FOM is not equal to the target FOM, or at least within a threshold value of the target FOM 330, new tuning values for the AIMM 100 are calculated or selected 335. However, if the current FOM is equal to or within the defined threshold, then processing continues by once again measuring the performance metrics 310 and repeating the process. Finally, if the current FOM needs to be adjusted towards the target FOM, the AIMM 100 is adjusted with the new tuning values in an effort to attain or achieve operation at the target FOM 340. In some embodiments, this new tuning value may also be stored as a new default tuning value of the transmitter at the given state of operation. For instance, in one embodiment, a single default value can be used for all situations, and as such, the latest tuning values could be stored in the variable location. In other embodiments, a default tuning state may be maintained for a variety of operational states, such as band of operation, use case scenario (i.e., hand held, antenna up/down, slider in/out, etc.) and depending on the current operational state, the new tuning values may be stored into the appropriate default variable.
In one exemplary embodiment, the AIMM 100 is adjusted by tuning one or more of the tunable components 340, measuring the new FOM (i.e., based on the transmitter reflected loss) 320-330, and re-adjusting or retuning the AIMM 100 accordingly 335-340 in a continuous loop. This process is referred to as walking the matching circuit because is moves the circuit from a non-matched state towards a matched state one step at a time. This process is continued or repeated to attain and/or maintain performance at the target FOM. Thus, the process identified by steps 310 to 340 can be repeated periodically, a periodically, as needed, or otherwise. The looping is beneficial because even if performance at the target FOM is attained, adjustments may be necessary as the mode of operation (such as usage conditions) of the device change and/or the performance of the transmitter, the antenna and the matching circuitry change over time. In other embodiments, the tunable components can be set based on look-up tables or a combination of look-up tables and performing fine-tuning adjustments. For instance, the step of calculating the AIMM tuning values 335 may involve accessing initial values from a look-up table and then, on subsequent loops through the process, fine tuning the values of the components in the AIMM 100.
In an exemplary embodiment of the present invention operating within a TDM environment, the AIMM 100 can be adjusted to optimize the operation of the transmitter during the transmit time slot. In such an embodiment, the performance metric may simply be the transmitter return loss. In addition, the target FOM in such an embodiment may also simply be a function of the transmitter return loss. In this exemplary embodiment, the AIMM 100 can be tuned to minimize the FOM or the transmitter return loss.
More particularly, for the circuit illustrated in
The adjustment values for PTC1 and PTC2 can be determined in a variety of manners. For instance, in one embodiment of the invention the values may be stored in memory for various transmitter frequencies and usage scenarios. In other embodiments, the values may be heuristically determined on the fly by making adjustments to the tuning circuit, observing the effect on the transmitter return loss, and compensating accordingly. In yet another embodiment, a combination of a look-up table combined with heuristically determined fine tuning can be used to adjust the AIMM 100.
During the receiver time slot, the AIMM 100 can be readjusted to optimize or improve the performance of the receiver. Although, similar to the adjustments during the transmit time slot, particular performance parameters may be measured and used to calculate a current FOM, as previously mentioned it is difficult to measure such performance parameters for the receiver. As such, an exemplary embodiment of the present invention operates to apply a translation to the tuning values of the AIMM 100 derived at during the transmitter time slot, to improve the performance during the receive time slot. During the design of the transmitter and receiver circuitry, the characteristics of performance between the transmitter operation and receiver operation can be characterized. This characterization can then be used to identify an appropriate translation to be applied. The translation may be selected as a single value that is applicable for all operational states and use cases or, individual values can be determined for various operational states and use cases.
PTC1_Rx=PTC1_Tx+1−1.8*PTC2_Tx.
It should be noted that this equation is only a non-limiting example of an equation that could be used for a particular circuit under particular operating conditions and the present invention is not limited to utilization of this particular equation.
It should be understood that the translation applied to tuning of the AIMM 100 during the receiver time slot is based on the particular circuit and device and can be determined during design or even on an individual basis during manufacturing and testing. As such, the specific translations identified herein are for illustrative purposes only and should not be construed to limit the operation of the present invention.
Thus, for TDM systems, embodiments of the present invention operate to optimize operation of a device by tuning the matching circuit for an antenna to optimize operation based on a target FOM. During the receiver time slot, a translation is applied to the tuned components to improve receiver performance. The target FOM can be based on a variety of performance metrics and a typical such metric is the reflection loss of the transmitter. The values for the tuned components can be set based on operational conditions and using a look-up table, can be initially set by using such a look-up table and then heuristically fine tuned, or may be heuristically determined on the fly during operation. The translations applied during the receiver operation are determined empirically based on the design of the circuitry and/or testing and measurements of the operation of the circuit. However, a unique aspect of the present invention is tuning of the matching circuit during transmit mode and based on non-receiver related metrics and then retuning the circuit during receive mode operation based on a translation to optimize or attain a desired level of receiver operation.
In an exemplary embodiment of the present invention operating within an FDM environment, the AIMM 100 can be adjusted to so that the matching characteristics represent a compromise between optimal transmitter and receiver operation. Several techniques can be applied to achieve this compromise. In one technique, the translation applied in the TDM example could be modified to adjust the AIMM 100 as a compromise between the optimal transmit and receive settings. For instance, in the example illustrated in
However, another technique of an embodiment of the present invention is to apply an algorithm that operates to attain a target FOM that is based on one or more transmitter related metrics (such as return loss) and the values of the adjustable components in the AIMM. Advantageously, this aspect of the present invention continuously attempts to maintain a compromised state of operation that keeps the operation of the transmitter and the receiver at a particular target FOM that represents a compromise performance metric level.
In the particular example illustrated in
The operational goal of the system is to attempt to maintain the matching circuit at a point where the operational metrics for the transmitter are at a target value (eg. −12 dB) and the estimated desired receiver operation is most proximate. In an exemplary embodiment of the present invention, an equation used to express the target FOM for such an arrangement can be stated as follows:
Target FOM=f(Tx_RL,TX_RL_Target)+f(PTC2,PTC1)
Where: TX_RL is the measure transmitter return loss
TX_RL_Target is the targeted transmitter return loss
In an exemplary embodiment suitable for the circuit provided in
FOM=(Tx_RL−Tx_RL_Target)+C2*PTC2−C1*PTC1), where,
C1 and C2 are preference constants or scaled values, and
if Tx_RL>Tx_RL_Target then Tx_RL=Tx_RL_Target.
In operation, exemplary embodiments of the present invention optimize the transmitter based on the target reflected loss to attain operation on the desired contour 610 (as shown in
In the provided example illustrated in
Another embodiment of the present invention may take into consideration historical performance of the tunable components as well as current values. As an example, as the tunable components are adjusted, changes in the current FOM will occur in a particular direction (i.e., better or worse). As an example, if the AIMM adjustments 26 result in the current FOM falling on the top portion of a desired performance contour, making a particular adjustment may result in making the current FOM worse or better. If the adjustment was known to cause a certain result when the current FOM is located on the bottom of the contour and this time, the opposite result occurs, then this knowledge can help identify where the current FOM is located on the contour. Thus, knowing this information can be used in combination with the operation metric to attain the operation at the target FOM. For instance, the target FOM may be a function of the operational metrics, the current states of the tunable components, and the knowledge of previous results from adjusting the tunable components.
Stated another way, when a current FOM is calculated, the adjustments to reach the target FOM may take into consideration past reactions to previous adjustments. Thus, the adjustment to the tunable components may be a function of the FOM associated with a current setting and, the change in the current FOM resulting from previous changes to the tunable components.
In another embodiment of the present invention operating in an FDM environment, the FOM may be optimized similar to operation in the TDM environment. For example, the FOM may be a function of the transmitter reflected loss metric and the system may function to optimize the FOM based on this metric. Once optimized, the tunable components can be adjusted based on a predetermined translation to move the FOM from the optimized for the transmitter position to a position that is somewhere between the optimal transmitter setting and the optimal receiver setting.
It should be appreciated that the values of C1 and C2 are constants and can vary among embodiments of the invention, as well as among devices employing the invention. As such, the values are determined empirically as described above. In an exemplary embodiment, the values of C1 and C2 are 0.7 and 2 respectively for a given circuit and a given antenna, given mode of operation, etc. Thus, any given set of constants are determined empirically and only apply to a specific antenna design, circuit and mode of operation and, although the use of these specific values may in and of itself be considered novel, the present invention is not limited to the particular expression. In fact, depending on particular goals, design criteria, operational requirements, etc. different values may be required to attain the compromised performance. It will also be appreciated that in various embodiments, it may be desired to have a different targeted reflection loss for the transmitter than for the receiver.
In another embodiment of the present invention, rather than analyzing the transmitter reflected power as the performance metric, the reflection coefficient vector may be measured. In this embodiment, the phase information of the reflection coefficient may be included within the FOM. For example,
As mentioned, mobile and transportable transceivers are subjected to a variety of use cases. For instance, a typical cellular telephone could be operated in various scenarios including speaker phone mode, ear budded, with the antenna in the up position or the down position, in the user's hand, holster, pocket, with a slider closed or extended, in a holster or out of a holster, etc. All of these scenarios, as well as a variety of other environmental circumstances can drastically alter the matching characteristics of the cellular telephone's antenna circuitry. As such, not only do the various embodiments of the present invention operate to tune the matching circuitry based on the operational frequency, but in addition, adjust the matching characteristics based on changes in the modes of operation. Advantageously, this greatly improves the performance of the device without requiring separate matching circuitry for the various modes of operation of the device. Thus, it will be appreciated that various other parameters can be monitored to identify various use cases and then adjustments to the tuning circuitry can be immediately deployed followed by fine tuning adjustments to optimize the FOM. The other parameters in which the embodiments of the present invention may function are referred to as modes of operation. The various modes of operation include the use cases as previously described, along with operating environments, bands of operation, channel frequencies, modulation formats and schemes, and physical environments. Thus, the various embodiments of the present invention may make changes, select default values, calculate adjustment values, etc., all as a function of one or more of the modes of operation.
One embodiment of the present invention may maintain a set of initial starting values based on the various use cases and operational environments. For instance, each use case may include a default value. Upon detection or activation of the device in a new use case, the default value is obtained from memory and the components in the AIMM are tuned accordingly. From that point on, the adjustment algorithm can then commence fine tuning of the operation. As previously mentioned, each time the target FOM is attained for a particular use case, the new values may be written into the default location as the new default values. Thus, every time the operational state of the device changes, such as changing between bands of operation etc., the default values are obtained and applied, and then adjustments can resume or, operation can simply be held at the default value.
Numerous specific details have now been set forth to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.
Unless specifically stated otherwise, as apparent from the description, it is appreciated that throughout the specification discussions that different electronic devices could be used to create a variable tuner network. The embodiments used in the examples discussed were specific to variable capacitor devices, however variable inductors, or other tunable networks, built out of elements such as Micro-Electro-Mechanical Systems (MEMS) and/or other tunable variable impedance networks could be used in such an AIMM system.
Unless specifically stated otherwise, as apparent from the description, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a microprocessor, microcontroller, computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.
Embodiments of the present invention may include apparatuses for performing the operations herein. An apparatus may be specially constructed for the desired purposes, or it may comprise a general purpose computing device selectively activated or reconfigured by a program stored in the device. Such a program may be stored on a storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, compact disc read only memories (CD-ROMs), magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), electrically programmable read-only memories (EPROMs), electrically erasable and programmable read only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions, and capable of being coupled to a system bus for a computing device.
The processes presented herein are not inherently related to any particular computing device or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. In addition, it should be understood that operations, capabilities, and features described herein may be implemented with any combination of hardware (discrete or integrated circuits) and software.
Use of the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may be used to indicated that two or more elements are in either direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements co-operate or interact with each other (e.g. as in a cause an effect relationship).
In the description and claims of the present application, each of the verbs, “comprise,” “include,” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements, or parts of the subject or subjects of the verb.
The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons of the art.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described herein above. Rather the scope of the invention is defined by the claims that follow.
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,798,555. The Reissue applications are this application, application Ser. No. 14/716,014, and application Ser. No. 16/372,838, filed on Apr. 2, 2019. This application is a reissue application of U.S. Pat. No. 8,798,555 issued Aug. 5, 2014 from U.S. patent application Ser. No. 13/693,388 filed Dec. 4, 2012, which is a continuation of co-pending of U.S. patent application Ser. No. 13/168,529 filed on Jun. 24, 2011, now U.S. Pat. No. 8,428,523, which is a continuation of U.S. patent application Ser. No. 11/940,309 filed on Nov. 14, 2007, now U.S. Pat. No. 7,991,363, the disclosures of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2745067 | True | May 1956 | A |
3117279 | Ludvigson | Jan 1964 | A |
3160832 | Beitman | Dec 1964 | A |
3390337 | Beitman | Jun 1968 | A |
3443231 | Roza | May 1969 | A |
3509500 | McNair | Apr 1970 | A |
3571716 | Hill | Mar 1971 | A |
3590385 | Sabo | Jun 1971 | A |
3601717 | Kuecken | Aug 1971 | A |
3742279 | Kupsky | Jun 1973 | A |
3749491 | Maxfield et al. | Jul 1973 | A |
3794941 | Templin | Feb 1974 | A |
3919644 | Smolka | Nov 1975 | A |
3990024 | Hou | Nov 1976 | A |
3995237 | Brunner | Nov 1976 | A |
4186359 | Kaegebein | Jan 1980 | A |
4201960 | Skutta | May 1980 | A |
4227256 | O'Keefe | Oct 1980 | A |
4383441 | Willis | May 1983 | A |
4476578 | Gaudin | Oct 1984 | A |
4493112 | Bruene | Jan 1985 | A |
4509019 | Banu et al. | Apr 1985 | A |
4777490 | Sharma | Oct 1988 | A |
4799066 | Deacon | Jan 1989 | A |
4965607 | Wilkins | Oct 1990 | A |
4970478 | Townley et al. | Nov 1990 | A |
4980656 | Duffalo | Dec 1990 | A |
5032805 | Elmer | Jul 1991 | A |
5136478 | Bruder | Aug 1992 | A |
5142255 | Chang | Aug 1992 | A |
5177670 | Shinohara | Jan 1993 | A |
5195045 | Keane | Mar 1993 | A |
5200826 | Seong | Apr 1993 | A |
5212463 | Babbitt | May 1993 | A |
5216392 | Fraser et al. | Jun 1993 | A |
5230091 | Vaisanen et al. | Jul 1993 | A |
5243358 | Sanford | Sep 1993 | A |
5258728 | Taniyoshi | Nov 1993 | A |
5276912 | Siwiak | Jan 1994 | A |
5301358 | Gaskill | Apr 1994 | A |
5307033 | Koscica | Apr 1994 | A |
5310358 | Johnson | May 1994 | A |
5312790 | Sengupta | May 1994 | A |
5334958 | Babbitt | Aug 1994 | A |
5361403 | Dent | Nov 1994 | A |
5371473 | Trinh | Dec 1994 | A |
5409889 | Das | Apr 1995 | A |
5427988 | Sengupta | Jun 1995 | A |
5430417 | Martin | Jul 1995 | A |
5446447 | Carney | Aug 1995 | A |
5448252 | Ali | Sep 1995 | A |
5451567 | Das | Sep 1995 | A |
5451914 | Stengel | Sep 1995 | A |
5457394 | McEwan | Oct 1995 | A |
5472935 | Yandrofski | Dec 1995 | A |
5479139 | Koscica | Dec 1995 | A |
5486491 | Sengupta | Jan 1996 | A |
5496795 | Das | Mar 1996 | A |
5502372 | Quan | Mar 1996 | A |
5524281 | Bradley | Jun 1996 | A |
5548837 | Hess et al. | Aug 1996 | A |
5561407 | Koscica | Oct 1996 | A |
5564086 | Cygan | Oct 1996 | A |
5583359 | Ng et al. | Dec 1996 | A |
5589844 | Belcher et al. | Dec 1996 | A |
5593495 | Masuda | Jan 1997 | A |
5635433 | Sengupta | Jun 1997 | A |
5635434 | Sengupta | Jun 1997 | A |
5640042 | Koscica | Jun 1997 | A |
5679624 | Das | Oct 1997 | A |
5689219 | Piirainen | Nov 1997 | A |
5693429 | Sengupta | Dec 1997 | A |
5694134 | Barnes | Dec 1997 | A |
5699071 | Urakami | Dec 1997 | A |
5721194 | Yandrofski | Feb 1998 | A |
5766697 | Sengupta | Jun 1998 | A |
5777581 | Lilly | Jul 1998 | A |
5778308 | Sroka | Jul 1998 | A |
5786727 | Sigmon | Jul 1998 | A |
5812572 | King | Sep 1998 | A |
5812943 | Suzuki | Sep 1998 | A |
5830591 | Sengupta | Nov 1998 | A |
5846893 | Sengupta | Dec 1998 | A |
5874926 | Tsuru | Feb 1999 | A |
5880635 | Satoh | Mar 1999 | A |
5886867 | Chivukula | Mar 1999 | A |
5892482 | Coleman et al. | Apr 1999 | A |
5926751 | Vlahos et al. | Jul 1999 | A |
5929717 | Richardson | Jul 1999 | A |
5940030 | Hampel et al. | Aug 1999 | A |
5963871 | Zhinong | Oct 1999 | A |
5969582 | Boesch | Oct 1999 | A |
5973568 | Shapiro et al. | Oct 1999 | A |
5982099 | Barnes et al. | Nov 1999 | A |
5990766 | Zhang | Nov 1999 | A |
6008759 | Tangemann et al. | Dec 1999 | A |
6009124 | Smith | Dec 1999 | A |
6020787 | Kim | Feb 2000 | A |
6020795 | Kim | Feb 2000 | A |
6029075 | Das | Feb 2000 | A |
6045932 | Jia | Apr 2000 | A |
6061025 | Jackson | May 2000 | A |
6064865 | Kuo et al. | May 2000 | A |
6074971 | Chiu | Jun 2000 | A |
6096127 | Dimos | Aug 2000 | A |
6100733 | Dortu | Aug 2000 | A |
6101102 | Brand | Aug 2000 | A |
6115585 | Matero | Sep 2000 | A |
6125266 | Matero et al. | Sep 2000 | A |
6133868 | Butler et al. | Oct 2000 | A |
6133883 | Munson | Oct 2000 | A |
6172385 | Duncombe | Jan 2001 | B1 |
6215644 | Dhuler | Apr 2001 | B1 |
6242989 | Barber | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6281748 | Klomsdorf et al. | Aug 2001 | B1 |
6281847 | Lee | Aug 2001 | B1 |
6309895 | Jaing | Oct 2001 | B1 |
6343208 | Ying | Jan 2002 | B1 |
6377142 | Chiu | Apr 2002 | B1 |
6377217 | Zhu | Apr 2002 | B1 |
6377440 | Zhu | Apr 2002 | B1 |
6384785 | Kamogawa | May 2002 | B1 |
6404614 | Zhu | Jun 2002 | B1 |
6408190 | Ying | Jun 2002 | B1 |
6414562 | Bouisse | Jul 2002 | B1 |
6415562 | Donaghue | Jul 2002 | B1 |
6438360 | Alberth, Jr. et al. | Aug 2002 | B1 |
6452776 | Chakravorty | Sep 2002 | B1 |
6461930 | Akram | Oct 2002 | B2 |
6466774 | Okabe | Oct 2002 | B1 |
6492883 | Liang | Dec 2002 | B2 |
6514895 | Chiu | Feb 2003 | B1 |
6525630 | Zhu | Feb 2003 | B1 |
6531936 | Chiu | Mar 2003 | B1 |
6535076 | Partridge | Mar 2003 | B2 |
6535722 | Rosen | Mar 2003 | B1 |
6538603 | Chen | Mar 2003 | B1 |
6556102 | Sengupta | Apr 2003 | B1 |
6556814 | Klomsdorf | Apr 2003 | B1 |
6570462 | Edmonson | May 2003 | B2 |
6590468 | du Toit | Jul 2003 | B2 |
6590541 | Schultze | Jul 2003 | B1 |
6597265 | Liang | Jul 2003 | B2 |
6608603 | Alexopoulos | Aug 2003 | B2 |
6624786 | Boyle | Sep 2003 | B2 |
6628962 | Katsura et al. | Sep 2003 | B1 |
6640085 | Chatzipetros | Oct 2003 | B1 |
6657595 | Phillips et al. | Dec 2003 | B1 |
6661638 | Jackson et al. | Dec 2003 | B2 |
6670256 | Yang | Dec 2003 | B2 |
6710651 | Forrester | Mar 2004 | B2 |
6724611 | Mosley | Apr 2004 | B1 |
6724890 | Bareis | Apr 2004 | B1 |
6737179 | Sengupta | May 2004 | B2 |
6747522 | Pietruszynski et al. | Jun 2004 | B2 |
6759918 | Du Toit | Jul 2004 | B2 |
6765540 | Toncich | Jul 2004 | B2 |
6768472 | Alexopoulos | Jul 2004 | B2 |
6774077 | Sengupta | Aug 2004 | B2 |
6795712 | Vakilian | Sep 2004 | B1 |
6825818 | Toncich | Nov 2004 | B2 |
6839028 | Lee | Jan 2005 | B2 |
6845126 | Dent | Jan 2005 | B2 |
6859104 | Toncich | Feb 2005 | B2 |
6862432 | Kim | Mar 2005 | B1 |
6864757 | Du Toit | Mar 2005 | B2 |
6868260 | Jagielski | Mar 2005 | B2 |
6875655 | Lin | Apr 2005 | B2 |
6882245 | Utsunomiya | Apr 2005 | B2 |
6888714 | Shaw | May 2005 | B2 |
6905989 | Ellis | Jun 2005 | B2 |
6906653 | Uno | Jun 2005 | B2 |
6907234 | Karr | Jun 2005 | B2 |
6914487 | Doyle et al. | Jul 2005 | B1 |
6920315 | Wilcox et al. | Jul 2005 | B1 |
6922330 | Nielsen | Jul 2005 | B2 |
6943078 | Zheng | Sep 2005 | B1 |
6946847 | Nishimori | Sep 2005 | B2 |
6949442 | Barth | Sep 2005 | B2 |
6961368 | Dent | Nov 2005 | B2 |
6964296 | Memory | Nov 2005 | B2 |
6965837 | Vintola | Nov 2005 | B2 |
6987493 | Chen | Jan 2006 | B2 |
6993297 | Smith | Jan 2006 | B2 |
6999297 | Klee | Feb 2006 | B1 |
7009455 | Toncich | Mar 2006 | B2 |
7071776 | Forrester | Jul 2006 | B2 |
7106715 | Kelton | Sep 2006 | B1 |
7107033 | du Toit | Sep 2006 | B2 |
7113614 | Rhoads | Sep 2006 | B2 |
7151411 | Martin | Dec 2006 | B2 |
7176634 | Kitamura | Feb 2007 | B2 |
7176845 | Fabrega-Sanchez | Feb 2007 | B2 |
7180467 | Fabrega-Sanchez | Feb 2007 | B2 |
7218186 | Chen et al. | May 2007 | B2 |
7221327 | Toncich | May 2007 | B2 |
7298329 | Diament | Nov 2007 | B2 |
7299018 | Van Rumpt | Nov 2007 | B2 |
7312118 | Kiyotoshi | Dec 2007 | B2 |
7332980 | Zhu | Feb 2008 | B2 |
7332981 | Matsuno | Feb 2008 | B2 |
7339527 | Sager | Mar 2008 | B2 |
7369828 | Shamsaifar | May 2008 | B2 |
7426373 | Clingman | Sep 2008 | B2 |
7427949 | Channabasappa et al. | Sep 2008 | B2 |
7453405 | Nishikido et al. | Nov 2008 | B2 |
7468638 | Tsai | Dec 2008 | B1 |
7469129 | Blaker et al. | Dec 2008 | B2 |
7528674 | Kato et al. | May 2009 | B2 |
7531011 | Yamasaki | May 2009 | B2 |
7535080 | Zeng et al. | May 2009 | B2 |
7535312 | McKinzie | May 2009 | B2 |
7539527 | Jang | May 2009 | B2 |
7557507 | Wu | Jul 2009 | B2 |
7567782 | Liu et al. | Jul 2009 | B2 |
7596357 | Nakamata | Sep 2009 | B2 |
7633355 | Matsuo | Dec 2009 | B2 |
7642879 | Matsuno | Jan 2010 | B2 |
7655530 | Hosking | Feb 2010 | B2 |
7667663 | Hsiao | Feb 2010 | B2 |
7671693 | Brobston et al. | Mar 2010 | B2 |
7705692 | Fukamachi et al. | Apr 2010 | B2 |
7711337 | McKinzie | May 2010 | B2 |
7714676 | McKinzie | May 2010 | B2 |
7714678 | du Toit et al. | May 2010 | B2 |
7728693 | du Toit et al. | Jun 2010 | B2 |
7760699 | Malik | Jul 2010 | B1 |
7768400 | Lawrence et al. | Aug 2010 | B2 |
7786819 | Ella | Aug 2010 | B2 |
7795990 | du Toit | Sep 2010 | B2 |
7830320 | Shamblin | Nov 2010 | B2 |
7852170 | McKinzie | Dec 2010 | B2 |
7856228 | Lekutai et al. | Dec 2010 | B2 |
7865154 | Mendolia | Jan 2011 | B2 |
7907094 | Kakitsu et al. | Mar 2011 | B2 |
7917104 | Manssen et al. | Mar 2011 | B2 |
7949309 | Rofougaran | May 2011 | B2 |
7969257 | du Toit | Jun 2011 | B2 |
7983615 | Bryce et al. | Jul 2011 | B2 |
7991363 | Greene | Aug 2011 | B2 |
8008982 | McKinzie | Aug 2011 | B2 |
8072285 | Spears | Dec 2011 | B2 |
8112043 | Knudsen et al. | Feb 2012 | B2 |
8170510 | Knudsen et al. | May 2012 | B2 |
8190109 | Ali et al. | May 2012 | B2 |
8204446 | Scheer | Jun 2012 | B2 |
8213886 | Blin | Jul 2012 | B2 |
8217731 | McKinzie et al. | Jul 2012 | B2 |
8217732 | McKinzie | Jul 2012 | B2 |
8299867 | McKinzie | Oct 2012 | B2 |
8320850 | Khlat | Nov 2012 | B1 |
8325097 | McKinzie, III et al. | Dec 2012 | B2 |
8405563 | McKinzie et al. | Mar 2013 | B2 |
8421548 | Spears et al. | Apr 2013 | B2 |
8432234 | Manssen et al. | Apr 2013 | B2 |
8442457 | Harel et al. | May 2013 | B2 |
8454882 | Chan et al. | Jun 2013 | B2 |
8457569 | Blin | Jun 2013 | B2 |
8472888 | Manssen et al. | Jun 2013 | B2 |
8478344 | Rofougaran et al. | Jul 2013 | B2 |
8558633 | McKinzie, III | Oct 2013 | B2 |
8564381 | McKinzie | Oct 2013 | B2 |
8594584 | Greene et al. | Nov 2013 | B2 |
8620236 | Manssen et al. | Dec 2013 | B2 |
8620246 | McKinzie et al. | Dec 2013 | B2 |
8620247 | McKinzie et al. | Dec 2013 | B2 |
8655286 | Mendolia | Feb 2014 | B2 |
8674783 | Spears et al. | Mar 2014 | B2 |
8680934 | McKinzie et al. | Mar 2014 | B2 |
8693963 | du Toit et al. | Apr 2014 | B2 |
8712340 | Hoirup et al. | Apr 2014 | B2 |
8773019 | Pham et al. | Jul 2014 | B2 |
8774743 | Ali et al. | Jul 2014 | B2 |
8787845 | Manssen et al. | Jul 2014 | B2 |
8803631 | Greene et al. | Aug 2014 | B2 |
8860525 | Spears et al. | Oct 2014 | B2 |
8948889 | Spears et al. | Feb 2015 | B2 |
8957742 | Spears et al. | Feb 2015 | B2 |
9026062 | Greene et al. | May 2015 | B2 |
9083405 | Christoffersson et al. | Jul 2015 | B2 |
9119152 | Blin | Aug 2015 | B2 |
9231643 | Greene et al. | Jan 2016 | B2 |
9374113 | Manssen et al. | Jun 2016 | B2 |
9473194 | Domino et al. | Oct 2016 | B2 |
9698758 | Spears et al. | Jul 2017 | B2 |
9698858 | Hoirup et al. | Jul 2017 | B2 |
20020008672 | Gothard | Jan 2002 | A1 |
20020030566 | Bozler | Mar 2002 | A1 |
20020079982 | Lafleur et al. | Jun 2002 | A1 |
20020109642 | Gee et al. | Aug 2002 | A1 |
20020118075 | Ohwada | Aug 2002 | A1 |
20020145483 | Bouisse | Oct 2002 | A1 |
20020167963 | Joa-Ng | Nov 2002 | A1 |
20020183013 | Auckland et al. | Dec 2002 | A1 |
20020187780 | Souissi | Dec 2002 | A1 |
20020191703 | Ling et al. | Dec 2002 | A1 |
20020193088 | Jung | Dec 2002 | A1 |
20030060227 | Sekine et al. | Mar 2003 | A1 |
20030071300 | Yashima | Apr 2003 | A1 |
20030114124 | Higuchi | Jun 2003 | A1 |
20030137464 | Foti et al. | Jul 2003 | A1 |
20030142022 | Ollikainen | Jul 2003 | A1 |
20030184319 | Nishimori et al. | Oct 2003 | A1 |
20030193997 | Dent | Oct 2003 | A1 |
20030199286 | du Toit | Oct 2003 | A1 |
20030210203 | Phillips et al. | Nov 2003 | A1 |
20030210206 | Phillips et al. | Nov 2003 | A1 |
20030216150 | Ueda | Nov 2003 | A1 |
20030232607 | Le Bars | Dec 2003 | A1 |
20040009754 | Smith | Jan 2004 | A1 |
20040090372 | Nallo | May 2004 | A1 |
20040100341 | Luetzelschwab | May 2004 | A1 |
20040125027 | Rubinshteyn et al. | Jul 2004 | A1 |
20040127178 | Kuffner | Jul 2004 | A1 |
20040137950 | Bolin | Jul 2004 | A1 |
20040202399 | Kochergin | Oct 2004 | A1 |
20040204027 | Park et al. | Oct 2004 | A1 |
20040227176 | York | Nov 2004 | A1 |
20040232982 | Ichitsubo et al. | Nov 2004 | A1 |
20040257293 | Friedrich et al. | Dec 2004 | A1 |
20040263411 | Fabrega-Sanchez et al. | Dec 2004 | A1 |
20040264610 | Marro et al. | Dec 2004 | A1 |
20050007291 | Fabrega-Sanchez | Jan 2005 | A1 |
20050032488 | Pehlke | Feb 2005 | A1 |
20050032541 | Wang | Feb 2005 | A1 |
20050042994 | Otaka | Feb 2005 | A1 |
20050059362 | Kalajo | Mar 2005 | A1 |
20050082636 | Yashima | Apr 2005 | A1 |
20050083234 | Poilasne | Apr 2005 | A1 |
20050085204 | Poilasne et al. | Apr 2005 | A1 |
20050093624 | Forrester et al. | May 2005 | A1 |
20050130608 | Forse | Jun 2005 | A1 |
20050130699 | Kim | Jun 2005 | A1 |
20050208960 | Hassan | Sep 2005 | A1 |
20050215204 | Wallace | Sep 2005 | A1 |
20050227627 | Cyr | Oct 2005 | A1 |
20050227633 | Dunko | Oct 2005 | A1 |
20050259011 | Vance | Nov 2005 | A1 |
20050260962 | Nazrul | Nov 2005 | A1 |
20050264455 | Talvitie | Dec 2005 | A1 |
20050280588 | Fujikawa et al. | Dec 2005 | A1 |
20050282503 | Onno | Dec 2005 | A1 |
20060003537 | Sinha | Jan 2006 | A1 |
20060009165 | Alles | Jan 2006 | A1 |
20060030277 | Cyr | Feb 2006 | A1 |
20060077082 | Shanks et al. | Apr 2006 | A1 |
20060084392 | Marholev | Apr 2006 | A1 |
20060099915 | Laroia et al. | May 2006 | A1 |
20060099952 | Prehofer et al. | May 2006 | A1 |
20060119511 | Collinson et al. | Jun 2006 | A1 |
20060148415 | Hamalainen et al. | Jul 2006 | A1 |
20060160501 | Mendolia | Jul 2006 | A1 |
20060183431 | Chang et al. | Aug 2006 | A1 |
20060183433 | Mori et al. | Aug 2006 | A1 |
20060183442 | Chang et al. | Aug 2006 | A1 |
20060195161 | Li et al. | Aug 2006 | A1 |
20060205368 | Bustamante | Sep 2006 | A1 |
20060223451 | Posamentier | Oct 2006 | A1 |
20060252391 | Poilasne et al. | Nov 2006 | A1 |
20060281423 | Caimi | Dec 2006 | A1 |
20070001924 | Hirabayashi et al. | Jan 2007 | A1 |
20070013483 | Stewart | Jan 2007 | A1 |
20070035458 | Ohba | Feb 2007 | A1 |
20070042725 | Poilasne | Feb 2007 | A1 |
20070042734 | Ryu | Feb 2007 | A1 |
20070063788 | Zhu | Mar 2007 | A1 |
20070080888 | Mohamadi | Apr 2007 | A1 |
20070082611 | Terranova et al. | Apr 2007 | A1 |
20070085609 | Itkin | Apr 2007 | A1 |
20070091006 | Thober | Apr 2007 | A1 |
20070093282 | Chang et al. | Apr 2007 | A1 |
20070111681 | Alberth et al. | May 2007 | A1 |
20070121267 | Kotani et al. | May 2007 | A1 |
20070142011 | Shatara | Jun 2007 | A1 |
20070142014 | Wilcox | Jun 2007 | A1 |
20070149146 | Hwang | Jun 2007 | A1 |
20070171879 | Bourque | Jul 2007 | A1 |
20070182636 | Carlson | Aug 2007 | A1 |
20070184825 | Lim et al. | Aug 2007 | A1 |
20070194859 | Brobston | Aug 2007 | A1 |
20070197180 | McKinzie et al. | Aug 2007 | A1 |
20070200766 | McKinzie | Aug 2007 | A1 |
20070200773 | Dou et al. | Aug 2007 | A1 |
20070222697 | Caimi et al. | Sep 2007 | A1 |
20070248238 | Abreu et al. | Oct 2007 | A1 |
20070285326 | McKinzie | Dec 2007 | A1 |
20070293176 | Yu | Dec 2007 | A1 |
20080007478 | Jung | Jan 2008 | A1 |
20080018541 | Pang | Jan 2008 | A1 |
20080030165 | Lisac et al. | Feb 2008 | A1 |
20080055016 | Morris, III et al. | Mar 2008 | A1 |
20080055168 | Massey et al. | Mar 2008 | A1 |
20080081670 | Rofougaran | Apr 2008 | A1 |
20080090539 | Thompson | Apr 2008 | A1 |
20080094149 | Brobston | Apr 2008 | A1 |
20080106350 | McKinzie | May 2008 | A1 |
20080111748 | Dunn et al. | May 2008 | A1 |
20080122553 | McKinzie | May 2008 | A1 |
20080122723 | Rofougaran | May 2008 | A1 |
20080129612 | Wang | Jun 2008 | A1 |
20080158076 | Walley | Jul 2008 | A1 |
20080174508 | Iwai et al. | Jul 2008 | A1 |
20080261544 | Guillaume | Oct 2008 | A1 |
20080266190 | Ohba et al. | Oct 2008 | A1 |
20080274706 | Blin | Nov 2008 | A1 |
20080280570 | Blin | Nov 2008 | A1 |
20080285729 | Glasgow et al. | Nov 2008 | A1 |
20080288028 | Larson et al. | Nov 2008 | A1 |
20080294718 | Okano | Nov 2008 | A1 |
20080300027 | Dou et al. | Dec 2008 | A1 |
20080305749 | Ben-Bassat | Dec 2008 | A1 |
20080305750 | Alon et al. | Dec 2008 | A1 |
20080309617 | Kong et al. | Dec 2008 | A1 |
20090002077 | Rohani et al. | Jan 2009 | A1 |
20090027286 | Ohishi | Jan 2009 | A1 |
20090039976 | McKinzie, III | Feb 2009 | A1 |
20090051604 | Zhang | Feb 2009 | A1 |
20090051611 | Shamblin et al. | Feb 2009 | A1 |
20090079656 | Peyla | Mar 2009 | A1 |
20090082017 | Chang et al. | Mar 2009 | A1 |
20090088093 | Nentwig et al. | Apr 2009 | A1 |
20090109880 | Kim et al. | Apr 2009 | A1 |
20090121963 | Greene | May 2009 | A1 |
20090149136 | Rofougaran | Jun 2009 | A1 |
20090180403 | Tudosoiu | Jul 2009 | A1 |
20090184879 | Derneryd | Jul 2009 | A1 |
20090215446 | Hapsari et al. | Aug 2009 | A1 |
20090231220 | Zhang et al. | Sep 2009 | A1 |
20090253385 | Dent et al. | Oct 2009 | A1 |
20090264065 | Song | Oct 2009 | A1 |
20090278685 | Potyrailo | Nov 2009 | A1 |
20090295651 | Dou et al. | Dec 2009 | A1 |
20090323572 | Shi et al. | Dec 2009 | A1 |
20090323582 | Proctor et al. | Dec 2009 | A1 |
20100041348 | Wilcox et al. | Feb 2010 | A1 |
20100053009 | Rofougaran | Mar 2010 | A1 |
20100060531 | Rappaport | Mar 2010 | A1 |
20100073103 | Spears et al. | Mar 2010 | A1 |
20100731013 | Spears et al. | Mar 2010 | |
20100085260 | McKinzie | Apr 2010 | A1 |
20100085884 | Srinivasan et al. | Apr 2010 | A1 |
20100105425 | Asokan | Apr 2010 | A1 |
20100107067 | Vaisanen et al. | Apr 2010 | A1 |
20100134215 | Lee et al. | Jun 2010 | A1 |
20100156552 | McKinzie | Jun 2010 | A1 |
20100164640 | McKinzie | Jul 2010 | A1 |
20100164641 | McKinzie | Jul 2010 | A1 |
20100214189 | Kanazawa | Aug 2010 | A1 |
20100232474 | Rofougaran | Sep 2010 | A1 |
20100244576 | Hillan et al. | Sep 2010 | A1 |
20100277363 | Kainulainen et al. | Nov 2010 | A1 |
20100285836 | Horihata et al. | Nov 2010 | A1 |
20100302106 | Knudsen et al. | Dec 2010 | A1 |
20100304684 | Duron et al. | Dec 2010 | A1 |
20100304688 | Knudsen et al. | Dec 2010 | A1 |
20110002080 | Ranta | Jan 2011 | A1 |
20110012790 | Badaruzzaman | Jan 2011 | A1 |
20110012792 | Krenz | Jan 2011 | A1 |
20110014879 | Alberth et al. | Jan 2011 | A1 |
20110014886 | Manssen | Jan 2011 | A1 |
20110039504 | Nguyen et al. | Feb 2011 | A1 |
20110043298 | McKinzie | Feb 2011 | A1 |
20110043328 | Bassali | Feb 2011 | A1 |
20110053524 | Manssen | Mar 2011 | A1 |
20110063042 | Mendolia | Mar 2011 | A1 |
20110086600 | Muhammad | Apr 2011 | A1 |
20110086630 | Manssen | Apr 2011 | A1 |
20110102290 | Milosavljevic | May 2011 | A1 |
20110105023 | Scheer et al. | May 2011 | A1 |
20110116423 | Rousu et al. | May 2011 | A1 |
20110117863 | Camp, Jr. et al. | May 2011 | A1 |
20110117973 | Asrani et al. | May 2011 | A1 |
20110121079 | Lawrence et al. | May 2011 | A1 |
20110122040 | Wakabayashi et al. | May 2011 | A1 |
20110133994 | Korva | Jun 2011 | A1 |
20110140982 | Ozden et al. | Jun 2011 | A1 |
20110183628 | Baker | Jul 2011 | A1 |
20110183633 | Ohba et al. | Jul 2011 | A1 |
20110195679 | Lee et al. | Aug 2011 | A1 |
20110227666 | Manssen | Sep 2011 | A1 |
20110237207 | Bauder | Sep 2011 | A1 |
20110249760 | Chrisikos et al. | Oct 2011 | A1 |
20110250852 | Greene | Oct 2011 | A1 |
20110254637 | Manssen | Oct 2011 | A1 |
20110254638 | Manssen | Oct 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110281532 | Shin et al. | Nov 2011 | A1 |
20110285511 | Maguire et al. | Nov 2011 | A1 |
20110299438 | Mikhemar | Dec 2011 | A1 |
20110306310 | Bai | Dec 2011 | A1 |
20110309980 | Ali et al. | Dec 2011 | A1 |
20120051409 | Brobston et al. | Mar 2012 | A1 |
20120062431 | Tikka et al. | Mar 2012 | A1 |
20120075159 | Chang | Mar 2012 | A1 |
20120084537 | Indukuru | Apr 2012 | A1 |
20120094708 | Park | Apr 2012 | A1 |
20120100802 | Mohebbi | Apr 2012 | A1 |
20120112851 | Manssen | May 2012 | A1 |
20120112852 | Manssen et al. | May 2012 | A1 |
20120119843 | du Toit et al. | May 2012 | A1 |
20120119844 | du Toit et al. | May 2012 | A1 |
20120139810 | Faraone et al. | Jun 2012 | A1 |
20120154975 | Oakes | Jun 2012 | A1 |
20120214421 | Hoirup | Aug 2012 | A1 |
20120220243 | Mendolia | Aug 2012 | A1 |
20120243579 | Premakanthan et al. | Sep 2012 | A1 |
20120286586 | Balm | Nov 2012 | A1 |
20120293384 | Knudsen et al. | Nov 2012 | A1 |
20120295554 | Greene | Nov 2012 | A1 |
20120295555 | Greene et al. | Nov 2012 | A1 |
20120309332 | Liao et al. | Dec 2012 | A1 |
20130005277 | Klomsdorf et al. | Jan 2013 | A1 |
20130052967 | Black et al. | Feb 2013 | A1 |
20130056841 | Hsieh et al. | Mar 2013 | A1 |
20130076579 | Zhang et al. | Mar 2013 | A1 |
20130076580 | Zhang et al. | Mar 2013 | A1 |
20130106332 | Williams et al. | May 2013 | A1 |
20130122829 | Hyvonen et al. | May 2013 | A1 |
20130137384 | Desclos et al. | May 2013 | A1 |
20130154897 | Sorensen et al. | Jun 2013 | A1 |
20130194054 | Presti | Aug 2013 | A1 |
20130215846 | Yerrabommanahalli et al. | Aug 2013 | A1 |
20130231155 | Sheynman et al. | Sep 2013 | A1 |
20130265912 | Ikonen et al. | Oct 2013 | A1 |
20130293425 | Zhu et al. | Nov 2013 | A1 |
20130315285 | Black et al. | Nov 2013 | A1 |
20140002323 | Ali et al. | Jan 2014 | A1 |
20140009360 | Ikonen et al. | Jan 2014 | A1 |
20140162572 | Hirabayashi | Jun 2014 | A1 |
20140210686 | Ali et al. | Jul 2014 | A1 |
20140287698 | Ali et al. | Sep 2014 | A1 |
20160241276 | Zhu | Aug 2016 | A1 |
20160269055 | Greene et al. | Sep 2016 | A1 |
20160277129 | Manssen | Sep 2016 | A1 |
20160322991 | McKinzie | Nov 2016 | A1 |
20160336916 | Du Toit et al. | Nov 2016 | A1 |
20160373146 | Manssen et al. | Dec 2016 | A1 |
20170085244 | Manssen et al. | Mar 2017 | A1 |
20170197180 | Wei | Jul 2017 | A1 |
20170264322 | Greene et al. | Sep 2017 | A1 |
20170264335 | Hoirup et al. | Sep 2017 | A1 |
20170294712 | Greene | Oct 2017 | A1 |
20170294891 | McKinzie, III | Oct 2017 | A1 |
20170373661 | Manssen et al. | Dec 2017 | A1 |
20180198482 | Hoirup et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
101640949 | Feb 2010 | CN |
201765685 | Mar 2011 | CN |
19614655 | Oct 1997 | DE |
102008050743 | Apr 2010 | DE |
102009018648 | Oct 2010 | DE |
EP0909024 | Apr 1999 | EM |
0685936 | Jun 1995 | EP |
0909024 | Apr 1999 | EP |
1079296 | Feb 2001 | EP |
1137192 | Sep 2001 | EP |
1298810 | Apr 2006 | EP |
2214085 | Aug 2010 | EP |
2328233 | Jun 2011 | EP |
2388925 | Nov 2011 | EP |
2424119 | Feb 2012 | EP |
2638640 | Jul 2014 | EP |
3131157 | Feb 2017 | EP |
03276901 | Mar 1990 | JP |
02-077580 | Sep 1991 | JP |
9321526 | Dec 1997 | JP |
10209722 | Aug 1998 | JP |
2000124066 | Apr 2000 | JP |
2005-130441 | May 2005 | JP |
100645526 | Nov 2006 | KR |
10-0740177 | Jul 2007 | KR |
0171846 | Sep 2001 | WO |
2006031170 | Mar 2006 | WO |
2008030165 | Mar 2008 | WO |
2009064968 | May 2009 | WO |
2009108391 | Sep 2009 | WO |
2009155966 | Dec 2009 | WO |
2010028521 | Mar 2010 | WO |
2010121914 | Oct 2010 | WO |
2011044592 | Apr 2011 | WO |
2011084716 | Jul 2011 | WO |
2011084716 | Jul 2011 | WO |
2011102143 | Aug 2011 | WO |
2011133657 | Oct 2011 | WO |
2011028453 | Oct 2011 | WO |
2012067622 | May 2012 | WO |
2012067622 | May 2012 | WO |
2012085932 | Jun 2012 | WO |
2012085932 | Jun 2012 | WO |
2012112831 | Aug 2012 | WO |
Entry |
---|
Du Toit, “Tunable Microwave Devices With Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,649, filed Nov. 22, 2011. |
Eiji, N., “High-Frequency Circuit and Its Manufacture”, Patent Abstracts of Japan, vol. 1998, No. 13, Nov. 30, 1998 & JP 10 209722 A (Seiko Epson Corp), Aug. 7, 1998. |
Hoirup, “Method and Apparatus for Radio Antenna Frequency Tuning”, U.S. Appl. No. 13/030,177, filed Feb. 18, 2011. |
Huang, Libo et al., “Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications”, IEEE, Sep. 7, 2005, 13-17. |
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, vol. 79, No. 2, Jul. 9, 2001. |
Katsuya, K. , “Hybrid Integrated Circuit Device”, Patent Abstracts of Japan, Publication No. 03-276901, Date of publication of application: Sep. 12, 1991. |
Patent Cooperation Treaty, “International Search Report and Written Opinion”, Nov. 16, 2011, International Application No. PCT/US/2011/038543. |
Payandehjoo, Kasra et al., “Investigation of Parasitic Elements for Coupling Reduction in MultiAntenna Hand-Set Devices”, Published online Jan. 22, 2013 in Wiley Online Library (wileyonlinelibrary.com). |
Pervez, N.K. , “High Tunability barium strontium titanate thin films for RF circuit applications”, Applied Physics Letters, vol. 85, No. 19, Nov. 8, 2004. |
Petit, Laurent , “MEMS-Switched Parasitic-Antenna Array for Radiation Pattern Diversity”, IEEE Transactions on Antennas and Propagation, vol. 54, No. 9, Sep. 2009, 2624-2631. |
Qiao, et al., “Antenna Impedance Mismatch Measurement and Correction for Adaptive COMA Transceivers”, IEEE, Jan. 2005. |
Qiao, et al., “Measurement of Antenna Load Impedance for Power Amplifiers”, The Department of Electrical and Computer Engineering, University of California, San Diego, Sep. 13, 2004. |
Stemmer, Susanne , “Low-loss tunable capacitors fabricated directly on gold bottom electrodes”, Applied Physics Letters 88, 112905, Mar. 15, 2006. |
Taylor, T.R. , “Impact of thermal strain on the dielectric constant of sputtered barium strontium titanate thin films”, Applied Physics Letters, vol. 80, No. 11, Mar. 18, 2002. |
Xu, Hongtao , “Tunable Microwave Integrated Circuits using BST Thin Film Capacitors with Device”, Integrated Ferroelectrics, Department of Electrical Engineering and Computer Engineering, University of California, 2005, Apr. 2005. |
Zuo, S. , “Eigenmode Decoupling for Mimo Loop-Antenna Based on 180 Coupler”, Progress in Electromagnetics Research Letters, vol. 26, Aug. 2011, 11-20. |
Canadian Office Action, Application No. 2,821,173, Oct. 17, 2016. |
“European Search Report”, 16151299.1 search report, 2016. |
“Extended European Search Report”, EP Application No. 16155235.1, May 3, 2016. |
“Search Report”, ROC (Taiwan) Patent Application No. 101117467, English Translation, Apr. 12, 2016, 1 page. |
Canadian IPO, “Office Action mailed Mar. 10, 2017”, Mar. 10, 2017, 1-3. |
EPO, “Extended European Search Report, EP16188956.3,”, Jan. 9, 2017, 1-9. |
Extended European Search Report for 12749235.3 dated Jun. 8, 2017. |
Communication pursuant to Article 94(3) EPC issued by the European Patent Office, dated Nov. 16, 2017, European Patent Application 12177197.6. |
Communication pursuant to Article 94(3) EPC, Application No. 10822849.5, dated Oct. 11, 2017, 5 pages. |
Communication pursuant to Article 94(3) EPC, EPO application No. 16151299.1, dated Jun. 22, 2018. |
Office Action dated Nov. 7, 2018, Canadian Patent Application 2,826,573, 4 pages. |
India, Patent O., “Examination Report”, for Application No. 9844/DELNP/2013, dated Apr. 25, 2018, 5 pages. |
Intellectual Property India, “First Examination Report”, for Application No. 3160/CHE/2013 dated Jun. 5, 2018, dated Jun. 5, 2018, 5 pages. |
Bezooijen, A. et al., “A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches”, IEEE Journal of Solid-State Circuits, vol. 43, No. 10, Oct. 2008, 2259-2268. |
Du Toit, , “Tunable Microwave Devices With Auto Adjusting Matching Circuit”, U.S. Appl. No. 13/302,617, filed Nov. 22, 2011. |
Du Toit, , “Tunable Microwave Devices With Auto-Adjusting Matching Circuit”, U.S. Appl. No. 13/302,659, filed Nov. 22, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,463, filed May 16, 2011. |
Greene, , “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/108,589, filed May 16, 2011. |
Hyun, S. , “Effects of strain on the dielectric properties of tunable dielectric SrTi03 thin films”, Applied Physics Letters, 2004 American Institute of Physics. |
Ida, I. et al., “An Adaptive Impedence Matching System and Its Application to Mobile Antennas”, TENCON 2004, IEEE Region 10 Conference, See Abstract ad p. 544, Nov. 21-24, 2004, 543-547. |
Manssen, , “Method and Apparatus for Managing Interference in a Communication Device”, U.S. Appl. No. 61/326,206, filed Apr. 20, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 12/941,972, filed Nov. 8, 2010. |
Manssen, , “Method and Apparatus for Tuning Antennas in a Communication Device”, U.S. Appl. No. 13/005,122, filed Jan. 12, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,544, filed Nov. 10, 2011. |
McKinzie, , “Adaptive Impedance Matching Module (AIMM) Control Architectures”, U.S. Appl. No. 13/293,550, filed Nov. 10, 2011. |
McKinzie, , “Method and Apparatus for Adaptive Impedance Matching”, U.S. Appl. No. 13/217,748, filed Aug. 25, 2011. |
Mendolia, “Method and Apparatus for Tuning a Communication Device”, U.S. Appl. No. 13/035,417, filed Feb. 25, 2011. |
Paratek Microwave, Inc., , “Method and Appartus for Tuning Antennas in a Communication Device”, International Application No. PCT/US11/59620, filed Nov. 7, 2011. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Application No. PCT/US2010/046241, Mar. 2, 2011. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, International Application No. PCT/US2010/056413, Jul. 27, 2011. |
Patent Cooperation Treaty, , “International Search Report and Written Opinion”, PCT Application No. PCT/US08/005085, Jul. 2, 2008. |
Spears, , “Methods for Tuning an Adaptive Impedance Matching Network With a Look-Up Table”, U.S. Appl. No. 13/297,951, filed Nov. 16, 2011. |
Tombak, Ali , “Tunable Barium Strontium Titanate Thin Film Capacitors for RF and Microwave Applications”, IEEE Microwave and Wireles Components Letters, vol. 12, Jan. 2002. |
Number | Date | Country | |
---|---|---|---|
Parent | 13168529 | Jun 2011 | US |
Child | 13693388 | US | |
Parent | 11940309 | Nov 2007 | US |
Child | 13168529 | US | |
Parent | 13168529 | Jun 2011 | US |
Child | 11940309 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13693388 | Dec 2012 | US |
Child | 14716014 | US |