1. Field of the Invention
This invention relates generally to an industrial tunnel oven and process for heating products conveyed along the tunnel oven.
2. Background Art
Prior art tunnel ovens have been designed primarily for heating an inert product over a period of time as the product is conveyed along the tunnel oven wherein the temperature is controlled by adjusting the amount of heat added by gas burners or by electrical heating coils and the air leakage control does not adversely effect the control of the heating along the tunnel oven.
According to one or more embodiments, the invention comprises an air leakage controller for a tunnel oven of the type for processing a product fueled, exothermic reaction having a reaction temperature profile with a low temperature at a product entrance and increasing to a first desired higher temperature at a first distance into the tunnel oven, and a desired temperature profile progressing along the length of the tunnel oven, wherein the desired temperature profile includes at least one relative high temperature and at least one relative low temperature, the air leakage controller comprising: an air injection conduit having an inlet positioned in the tunnel oven at a position corresponding to the position along the temperature profile in the tunnel oven at which the at least one relative high temperature occurs, so that a positive pressure is maintained in the tunnel oven to thereby prevent additional air entry into the tunnel oven at other locations, and so that the component of oxygen in the air injected by the air injection conduit is depleted by the exothermic reaction of the product in the tunnel oven before the injected air flows from the relative high temperature location to the at least one relative low temperature location along the temperature profile of the tunnel oven; and an air injection pressure control for adjusting the amount of air injected to maintain the positive pressure and to provide a volume of air for providing a component of oxygen adequate for maintaining the exothermic reaction at or below the relatively high temperature without exceeding the desired relatively low temperature.
According to one or more embodiments, the oven cooling water is captured in a cleaning tank. Heat energy from cooling the heated content of the oven is thereby used to preheat purified water in the closed system steam turbine for driving the electric generator.
Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
According to one or more embodiments,
Applicants have addressed one or more of the problems that they discovered to exist in the described industrial tunnel oven operating environment, with embodiments of an air leakage control system 170 as described herein. An industrial oven 10 of the type for heat processing of a product 44 that may comprise combustible components or may otherwise undergo an exothermic reaction with oxygen upon heating. Particularly, in the case of hydrocarbon released from a product upon heating, the burning of hydrocarbon requires a source of oxygen. While this has been used by the inventors to benefit for reducing the amount of heat energy that may be required from heaters or burners 15 and 16, it is not always cost effective to maintain a tunnel oven without any extraneous air leakage or without any excess oxygen from burners that may require fuel gas and oxygen input. Thus, when the hydrocarbon is released, and a source of air or oxygen is available the hydrocarbon burns and produces. In a process with a temperature profile having a relatively high temperature part of the process and a relatively low temperature part of the desired temperature profile, it has been found to be useful to introduce air or another oxygen source into the tunnel so that the otherwise unused hydrocarbon can be burned to efficiently supply heat for the process. It is further found by the inventors to be beneficial to avoid entry of an oxidant source, for example, a source of oxygen such as air into the oven at locations along the heating section where the temperature of the process is intended to be relatively low. For purposes of this application the terms relatively high and relatively low are intended to indicate that a temperature of one part of the product heating process (or the temperature at a given location on the temperature profile for the process) is higher or lower relative to another part of the process (or relative to another location on the temperature profile). It has also been found that it is not always possible or at least it is not always cost effective, to prevent all leakage of air into an oven. Leakage may occur, for example, at a product entrance 23 or product exit 24 of the tunnel oven 10. Air leakage may occur along a joint in oven wall, along the floor, along the joint between the wall and the floor 14, at attachment locations for equipment such as burner attachments 15 and 16 or connections for sensors 17 and 18, such as temperature sensors, chemical sensors, and pressure sensors. The entry of air at locations corresponding to the location of relatively low temperatures can result in uncontrolled heating at the location, heating to temperatures above the desired temperature profile at the location, or possible heating to beyond a maximum operating temperature for the oven to maintain the integrity of the oven, and to avoid failure due to meltdown.
According to one or more embodiments air is purposefully injected into the oven at one or more air inlets 172a-x, selected for injection according to the proximity to the location in the oven at which a relatively high temperature is desired. Thus, in the example of
It has also been found by the inventors that the injection of air at the location of a relatively high temperature can also be controlled effectively to provide a pressurized atmosphere at the relatively low temperature areas to prevent air from entering through leakage and without causing hydrocarbon burning due to the oxygen content of the injected air. According to one or more embodiments, the amount of air injected is controlled and the rate of exhaust gas discharge is controlled so that oxygen content of the air is depleted and the remaining oxygen depleted air (primarily nitrogen that is inert and not an active oxidant) pressurizes the locations of relatively low desired temperature, effectively without resulting in combustion and exothermic heating in the relatively low temperature locations.
Consider for example the temperature profile 180 of
Consider for example the temperature profile 181 of
According to one or more embodiments air is introduced into a tunnel oven for processing a product with heat wherein the process has a reaction temperature profile with a low temperature at a product entrance and increasing to a first desired higher temperature at a first distance into the tunnel oven, and a desired temperature profile progressing along the length of the tunnel oven, wherein the desired temperature profile includes at least one relatively high temperature and at least one relatively low temperature. An air leakage control system includes an air supply connected to an air injection conduit having an inlet positioned into the tunnel oven at a position corresponding to the temperature profile for the process in the tunnel oven at which the at least one relatively high temperature occurs. A positive pressure is maintained in the tunnel oven to thereby prevent additional air entry into the tunnel oven at other locations, and so that the component of oxygen in the air injected by the air injection conduit is depleted by the exothermic reaction of the product in the tunnel oven at the injection location to facilitate producing the relatively high temperature. Before the injected air flows from the relatively high temperature location to the at least one relatively low temperature location along the temperature profile of the tunnel oven, the air is at least partially depleted of oxygen due to combustion at the location of injection. An air injection control for adjusting the amount of air injected and an exhaust flow restriction act together to maintain a positive pressure in the oven and to provide a volume of air for providing a component of oxygen adequate for maintaining the exothermic reaction at or below the relatively high temperature at the high temperature location and without exceeding the desired relatively low temperature.
According to one or more embodiments, the air injection conduit may have one or more inlets 172a-x and/or 173a-x, positioned into the tunnel oven 10 at one or more positions. The conduit inlets are controlled by one or more control valves 182a-x and/or 183a-x so that the air is injected at one or more positions corresponding to one or more positions along the temperature profile in the tunnel oven at which the at least one relatively high temperature is intended for the process and so that a positive pressure is maintained in the tunnel oven at one or more positions along the process temperature profile at which one or more relatively low temperature is intended.
According to one or more embodiments, the air injection conduit may have one or more inlets 172a-x and/or 173a-x, positioned into the tunnel oven 10 at one or more positions along the temperature profile in the tunnel oven at which the at least one relatively high temperature is to occur, so that the component of oxygen in the air injected by the air injection conduit is involved in an exothermic reaction with the product in the tunnel oven. The oxygen content is thereby at least partially depleted before the injected air flows from the relatively high temperature location to the at least one relatively low temperature location along the temperature profile of the tunnel oven.
According to one or more embodiments, an air injection pressure control is provided for adjusting the amount of air injected to maintain the positive pressure and to provide a volume of air for providing a component of oxygen adequate for maintaining the exothermic reaction at or below the relatively high temperature without exceeding the desired relatively low temperature. The pressure control may comprise an adjustable speed fan motor for providing a pressurized air supply and an exhaust valve control for adjusting the volume of exhaust gas discharged from the oven.
According to one or more embodiments as shown in
According to one or more embodiments, one or more of the air supply fan speed or restrictor position is computer controlled, the inlet valves 182a-x and/or 183a-x are computer controlled, the exhaust valves 176a-x are computer controlled. According to one or more embodiments pressure sensors and temperature sensors and/or chemical sensors are communicatively connected to the computer control for providing sensor information to be compared to a stored temperature profile for a predetermined heating process so that the air injection and exhaust discharge are controlled and adjusted to move the temperature of the process along the tunnel oven toward the stored desired or pre-determined process for the product.
Embodiments of the invention may be implemented on virtually any type of computing system regardless of the platform being used. For example, the computing system may be one or more mobile devices (e.g., laptop computer, smart phone, personal digital assistant, tablet computer, or other mobile device), desktop computers, servers, blades in a server chassis, or any other type of computing device or devices that includes at least the minimum processing power, memory, and input and output device(s) to perform one or more embodiments of the invention. For example, as shown in
Software instructions in the form of computer readable program code to perform embodiments of the invention may be stored, in whole or in part, temporarily or permanently, on a non-transitory computer readable medium such as a CD, DVD, storage device, a diskette, a tape, flash memory, physical memory, or any other computer readable storage medium. Specifically, the software instructions may correspond to computer readable program code that when executed by a processor(s), is configured to perform embodiments of the invention.
Further, one or more elements of the aforementioned computing system (500) may be located at a remote location and connected to the other elements over a network (512). Further, embodiments of the invention may be implemented on a distributed system having a plurality of nodes, where each portion of the invention may be located on a different node within the distributed system. In one embodiment of the invention, the node corresponds to a distinct computing device. Alternatively, the node may correspond to a computer processor with associated physical memory. The node may alternatively correspond to a computer processor or micro-core of a computer processor with shared memory and/or resources.
While the invention has been described with respect to a limited number of embodiments, and the discussion has focused on a limited number of embodiments of an air leakage controller, method controlling air leakage along a tunnel oven and system for controlling air leakage along a tunnel oven, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments, arrangements and combinations of inventive features can be devised according to the disclosure that do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the broadest interpretation of the attached claims.
This application claims the benefit of U.S. Provisional Application 61/852,395 filed on Mar. 15, 2013.
Number | Name | Date | Kind |
---|---|---|---|
3787171 | Cromp | Jan 1974 | A |
4856202 | Radomsky | Aug 1989 | A |
4957434 | Radomsky | Sep 1990 | A |
7150627 | Gaur | Dec 2006 | B2 |
20060225770 | Nowack | Oct 2006 | A1 |
20110318698 | Gaur | Dec 2011 | A1 |
20120067987 | Garcia Sanz | Mar 2012 | A1 |
20120231402 | Casson | Sep 2012 | A1 |
20140083836 | Quanci | Mar 2014 | A1 |
20140202028 | De Santos Avila | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
19963736 | Jul 2001 | DE |
870730 | Jun 1961 | GB |
2009084142 | Apr 2009 | JP |
WO 8202475 | Aug 1982 | WO |
Number | Date | Country | |
---|---|---|---|
61852395 | Mar 2013 | US |