This application claims priority of No. 112117375 filed in Taiwan R.O.C. on May 10, 2023, the entire content of which is hereby incorporated by reference.
This disclosure relates to a steam recycling apparatus, and more particularly to a tunnel type hybrid cooling steam recycling apparatus.
Steam condensers have been widely used in today's steam turbine power plants to condense the steam exhausted by the steam turbine and achieve steam recycling effects. A conventional steam condenser has a chamber connected to a steam outlet of the steam turbine, and the cooling water flows in a heat exchange tube in the chamber. The steam exhausted from the steam turbine enters the chamber and contacts the heat exchange tube. The cooling water flowing into the heat exchange tube absorbs the latent heat of the high-temperature steam, and the steam is condensed into water so that the steam can be recycled. Another conventional steam condenser has a chamber, in which the heat exchange tube (steam conduit) is disposed and connected to the steam outlet of the steam turbine. The cooling water in the chamber cools the steam conduit, and the steam is recycled.
The above-mentioned steam condensers need a lot of cooling water and heat exchange tubes, and the cost cannot be effectively decreased. In addition, the steam flowing either inside or outside the heat exchange tube causes the noise and the wear of the heat exchange tube.
Therefore, the above-mentioned problems need to be solved.
It is therefore an objective of this disclosure to provide a tunnel type hybrid cooling steam recycling apparatus achieving the quick cooling and decreasing the noise.
To achieve the above-identified objective, this disclosure provides a tunnel type hybrid cooling steam recycling apparatus including: a housing; air-cooling heat exchanging plates disposed on an outer surface of the housing; a chamber formed in the housing; a mesh steam tunnel disposed in the chamber; a steam inlet penetrating through the housing; spraying heads disposed in the chamber; and a water outlet penetrating through the housing. Steam supplied into the mesh steam tunnel through the steam inlet is condensed into condensed water. In a hybrid mode, the spraying heads provide cooling spray into the chamber to dissipate heat in a hybrid manner in conjunction with the housing and the air-cooling heat exchanging plates.
With the above-mentioned embodiment, the longitudinal steam tunnel having the large aperture can be used to buffer the flow of the high-pressure steam, and the layers of metal meshes can be used to reduce the energy and pressure of the steam, and then metal wool components are used to absorb the steam and perform silencing. Thus, quick cooling can be achieved by air cooling and water cooling, and the low-noise steam recycling can be achieved.
In order to make the above-mentioned content of this disclosure more obvious and be easily understood, preferred embodiments will be described in detail as follows in conjunction with the accompanying drawings.
In one example, the mesh steam tunnel 40 includes metal meshes, and has an axis extending in a horizontal direction. The metal meshes constitute a cylindrical metal cage, which provides a resisting force for the steam, and functions as a medium for condensing the steam. In another example, the mesh steam tunnel 40 includes circular, rectangular or other shaped stainless steel meshes surrounded by a cylindrical stainless steel mesh, achieves the functions of axially and radially reducing the energy and pressure of the steam, and provides the better effect.
The steam recycling apparatus 100 may further include mesh partitions 80, which partition the chamber 30 in a horizontal direction and a vertical direction, so that the chamber 30 is partitioned into sub-chambers connected together. The sub-chambers include a middle sub-chamber 31 and peripheral sub-chambers 32 to 39 surrounding the middle sub-chamber 31. The mesh steam tunnel 40 is positioned, by four mesh partitions 80, in the middle sub-chamber 31. The peripheral sub-chambers 32 to 39 accommodate metal wool components 81, such as steel wires or pieces of steel wool, for absorbing the steam, performing silencing, and condensing the steam into the condensed water. The spraying heads 60 provide cooling spray to one portion or the entire portion of the metal wool components 81 to cool the metal wool components 81. The steam recycling apparatus 100 may further include inclined plates 82 for guiding condensed water to flow to the water outlet 70. The inclined plates 82 may be positioned on structure walls of the housing 10, and tilted from two sides toward the middle position, so that the condensed water can flow to the middle position, and finally flow out of the water outlet 70. It is understandable that the mesh partitions 80 may be omitted as long as the metal wool components 81 can be mounted to a predetermined position.
The steam recycling apparatus 100 may further include a control device 90, a cooling water supply source 91 and a temperature sensor 92. The cooling water supply source 91 is electrically connected to the control device 90, and is connected to the spraying heads 60 via a physical conduit. In the hybrid mode, the cooling water supply source 91 provides cooling water to the spraying heads 60, which generate cooling spray and may also provide an appropriate amount of water to compensate for the steam loss. The temperature sensor 92 is disposed on the housing 10 or one of the air-cooling heat exchanging plates 20, and is electrically connected to the control device 90 that may be implemented by another controller. The control device 90 controls, according to a temperature signal of the temperature sensor 92, the cooling water supply source 91 to provide the cooling water to the spraying heads 60 generating the cooling spray. When the temperature represented by the temperature signal is higher than a predetermined temperature (e.g., 85° C. or another temperature), the control device 90 enters the hybrid mode. When the temperature represented by the temperature signal is lower than or equal to the predetermined temperature, the control device 90 enters an air cooling mode, and controls the cooling water supply source 91 not to provide the cooling water to the spraying heads 60, which do not generate the cooling spray.
In terms of water replenishment, a flow meter (not shown) is disposed at the water outlet 70 in one example. When the flow value of the flow meter does not reach a predetermined flow value, the control device 90 controls, according to the signal of the flow meter but not the temperature signal, the cooling water supply source 91 to provide the cooling water to the spraying heads 60, which generate the cooling spray. In another example, when the water level of the steam recycling apparatus and/or the water level of the water supply source of the steam generating apparatus are lower than a predetermined water level, the control device 90 controls the cooling water supply source 91 according to the water level signal of the water level gauge or sensor (not shown) but not the temperature signal, and the cooling water supply source 91 provides the cooling water to the spraying heads 60 so that the spraying heads 60 generate the cooling spray.
With the steam recycling apparatus of the embodiment, the long steam tunnel can be used to buffer the flow of the high-pressure steam, and the layers of metal meshes can be used to reduce the energy and pressure of the steam, and then the metal wool components are used to absorb the steam and perform silencing. Thus, quick cooling can be achieved by air cooling and water cooling, and the low-noise steam recycling can be achieved.
The specific embodiments proposed in the detailed description of this disclosure are only used to facilitate the description of the technical contents of this disclosure, and do not narrowly limit this disclosure to the above-mentioned embodiments. Various changes of implementations made without departing from the spirit of this disclosure and the scope of the claims are deemed as falling within the following claims.
Number | Date | Country | Kind |
---|---|---|---|
112117375 | May 2023 | TW | national |