Field
This disclosure is generally related to photovoltaic systems. More specifically, this disclosure is related to a photovoltaic system that combines tunneling-junction solar cells and optical concentrators.
Related Art
The negative environmental impact caused by the use of fossil fuels and their rising cost have resulted in a dire need for cleaner, cheaper alternative energy sources. Among different forms of alternative energy sources, solar power has been favored for its cleanness and wide availability.
Photovoltaic (PV) systems use solar panels to convert sunlight into electricity. A PV system includes multiple components, such as photovoltaic modules (or solar panels), frames, cables, and inverters. The cost of the PV modules contributes significantly to the cost of the entire photovoltaic system. To reduce costs, various approaches have been used to reduce the cost of each component and to improve the efficiency of the photovoltaic module. One approach is to use concentration optics that focuses sunlight to a smaller area, using a PV module that is much smaller than the size of the system. Consequently, the cost of the PV modules within the PV system can be reduced significantly. Although there are additional components, such as optical modules and a tracker, the cost of the whole system is still less than a system without the concentration optics.
There are many challenges in achieving a high-efficiency PV module with concentration optics. When the sunlight is focused to a smaller area, its intensity is greatly increased, resulting in rapid heating of the solar cells. Therefore, cooling is required. However, it is not economical to cool the temperature of the solar cells to as low as around 20° C. Instead, the solar cells will most likely operate at an elevated temperature. This is undesirable because the energy-conversion efficiency of semiconductor solar cells degrades as the temperature rises. The degradation is especially significant for conventional Si-based solar cells, since their temperature coefficient is usually between −0.48 and −0.50%/° C. Although GaAs and other III-V semiconductor-based solar cells perform much better at elevated temperatures, the higher manufacturing cost makes them less desirable.
Another issue with the concentration of sunlight is the current crowding effect. In a solar cell, the current is first generated by light absorbed in the solar cell structure, and then collected by the metal grid on the solar cell surface. The concentration of sunlight causes current crowding in the metal grids, where the current increases almost linearly with the concentration ratio. Current crowding can increase the series resistance of the solar cell. Consequently, as the current increases due to light concentration, the solar cell efficiency decreases because of the increased resistive loss.
Moreover, in conventional solar cells, the front metal grids are manufactured using printed silver paste. To minimize shading, the grids are narrow in width. The height of the screen-printed silver grid is typically limited to no more than 30 microns, and the shape of the cross section is triangular. In addition, the resistivity of silver paste after firing can be five to ten times higher than that of the pure silver, due to additives (such as glass grit or adhesives) in the paste. These factors constrain the series resistance of the metal grid, and negatively impact the solar cell efficiency.
One embodiment of the present invention provides a photovoltaic module. The photovoltaic module includes an optical concentrator and a tunneling-junction solar cell. The tunneling-junction solar cell includes a base layer, a quantum-tunneling-barrier (QTB) layer situated above the base layer, an emitter layer, a front-side electrode, and a back-side electrode.
In a variation on the embodiment, the QTB layer includes at least one of: silicon oxide (SiOx), hydrogenated SiOx, silicon nitride (SiNx), hydrogenated SiNx, aluminum oxide (AlOx), silicon oxynitride (SiON), and hydrogenated SiON.
In a variation on the embodiment, the emitter layer includes at least one of: amorphous-Si (a-Si) and amorphous-SiC (a-SiC).
In a variation on the embodiment, the front-side electrode includes a front-side metal grid comprising at least one of: Cu and Ni.
In a further variation, the front-side metal grid is formed using a plating technique.
In a variation on the embodiment, the front-side electrode includes a metal grid line having a curved surface, thereby allowing incident light hitting the curved surface to be reflected downward.
In a variation on the embodiment, the tunneling-junction solar cell further comprises a back surface field (BSF) layer situated below the base layer, and the BSF layer includes at least one of: amorphous-Si (a-Si) and amorphous-SiC (a-SiC).
In a variation on the embodiment, the tunneling-junction solar cell further comprises a transparent conductive oxide (TCO) layer situated on top of the emitter layer.
In a variation on the embodiment, the base layer comprises at least one of: a monocrystalline silicon wafer and an epitaxially grown crystalline-Si (c-Si) thin film.
In a variation on the embodiment, the tunneling-junction solar cell further includes a second QTB layer situated below the base layer.
In a variation on the embodiment, the emitter layer is situated beneath the base layer facing away from incident light.
One embodiment of the present invention includes a photovoltaic system. The system includes an optical module configured to concentrate received sunlight and a solar cell module. The solar cell module includes a multilayer semiconductor structure, a front-side metal grid situated above the multilayer semiconductor structure facing incoming light, and a back-side electrode. The front-side metal grid includes at least one of: Cu and Ni.
The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Overview
Embodiments of the present invention provide a concentrator photovoltaic (CPV) module that is based on tunneling-junction solar cells. The concentrator PV module includes an optical focusing mechanism, which concentrates sunlight shone on a larger area to a smaller area, and one or more tunneling-junction solar cells. A tunneling-junction solar cell includes a crystalline silicon (c-Si) stack, an oxide tunneling barrier-and-passivation layer, and a layer of amorphous semiconductor. In addition, the front metal grid of the solar cells is formed by plating coppers. This type of CPV module exhibits high conversion efficiency (up to 24%) and a low temperature coefficient (as low as −0.20% PC).
Tunneling-Junction Solar Cells
In one embodiment, the solar cells within a CPV module include a double-sided metal-insulator-semiconductor (MIS) tunneling structure with doped front and back amorphous semiconductor layers serving as emitter and BSF, respectively.
Either n- or p-type doped high-quality solar-grade silicon (SG-Si) wafers can be used to build tunneling-junction solar cells. In one embodiment, an n-type doped SG-Si wafer is selected.
In operation 2A, a substrate 200 is prepared. In one embodiment, substrate 200 is an SG-Si substrate. The resistivity of the SG-Si substrate is typically in, but not limited to, the range between 0.5 ohm-cm and 10 ohm-cm. In one embodiment, substrate 200 may be a composite base layer that includes an epitaxially formed c-Si enhancing layer deposited on an SG-Si substrate. The doping type of the c-Si enhancing layer is similar to that of the SG-Si substrate. In addition, the c-Si enhancing layer can be either uniformly doped or graded doped. In a further embodiment, the c-Si enhancing layer is uniformly doped with a uniform sheet resistance of 0.5 ohm-cm. In a different embodiment, the c-Si enhancing layer is graded doped with sheet resistance varying between 0.2 ohm-cm and 1 ohm-cm. The thickness of the c-Si enhancing layer can be between 0.5 μm and 2 μm.
The preparation operation includes typical saw damage etching that removes approximately 10 μm of silicon and surface texturing. The surface texture can have various patterns, including but not limited to: hexagonal-pyramid, inverted pyramid, cylinder, cone, ring, and other irregular shapes. In one embodiment, the surface texturing operation results in a random pyramid textured surface. Afterward, substrate 200 goes through extensive surface cleaning.
In operation 2B, a thin layer of high-quality (with defect-interface-state density (Dit) less than 1×1011/cm2) dielectric material is deposited on the front and back surfaces of SG-Si substrate 200 to form the front and back passivation/tunneling layers 202 and 204, respectively. In one embodiment, only the front surface of SG-Si substrate 200 is deposited with a thin layer of dielectric material. In an alternative embodiment, only the back surface of SG-Si substrate 200 is deposited with a thin layer of dielectric material. Various types of dielectric materials can be used to form the passivation/tunneling layers, including, but not limited to: silicon oxide (SiOx), hydrogenated SiOx, silicon nitride (SiNx), hydrogenated SiNx, aluminum oxide (AlOx), silicon oxynitride (SiON), and hydrogenerated SiON. In addition, various deposition techniques can be used to deposit the passivation/tunneling layers, including, but not limited to: thermal oxidation, atomic layer deposition, wet or steam oxidation, low-pressure radical oxidation, plasma-enhanced chemical-vapor deposition (PECVD), etc. The thickness of the tunneling/passivation layer can be between 1 and 50 angstroms, preferably between 1 and 10 angstroms. Note that the well-controlled thickness of the tunneling/passivation layer ensures good tunneling and passivation effects.
In operation 2C, a layer of hydrogenated, graded-doping a-Si is deposited on front passivation/tunneling layer 202 to form emitter layer 206. As a result, emitter layer 206 is situated on the front side of the solar cell facing the incident sunlight. The doping type of emitter layer 206 is opposite from that of SG-Si substrate 200. If SG-Si substrate 200 is n-type doped, then emitter layer 206 is p-type doped, and vice versa. In one embodiment, emitter layer 206 is p-type doped using boron as dopant. SG-Si substrate 200, front passivation/tunneling layer 202, and emitter layer 206 form the front oxide tunneling junction. The thickness of emitter layer 206 is between 2 and 50 nm. Note that the doping profile of emitter layer 206 can be optimized to ensure good ohmic contact, minimum light absorption, and a large built-in electrical field. In one embodiment, the doping concentration of emitter layer 206 varies from zero to 5×1020/cm3. In a further embodiment, the region within emitter layer 206 that is adjacent to front passivation/tunneling layer 202 is either undoped or having a lower doping concentration, and the region that is away from front passivation/tunneling layer 202 has a higher doping concentration. The lower doping concentration ensures minimum defect density at the interface between front passivation/tunneling layer 202 and emitter layer 206, and the higher concentration on the other side prevents emitter layer depletion. The crystal structure of emitter layer 206 can be amorphous, or nanocrystalline, which enables higher carrier mobility, or protocrystalline, which enables good absorption in the ultra-violet (UV) wavelength range and good transmission in the infrared (IR) wavelength range. All crystalline structures need to preserve the large bandgap of the a-Si. In one embodiment, emitter layer 206 can include carbon-doped a-Si. In a further embodiment, emitter layer 206 can include amorphous silicon carbide or hydrogenated amorphous silicon carbide (a-Si1-xCx:H).
In operation 2D, a layer of hydrogenated, graded-doping a-Si is deposited on the surface of back passivation/tunneling layers 204 to form back surface field (BSF) layer 208. The doping type of BSF layer 208 is the same as that of SG-Si substrate 200. If SG-Si substrate 200 is n-type doped, then BSF layer 208 is also n-type doped, and vise versa. In one embodiment, BSF layer 208 is n-type doped using phosphorous as dopant. SG-Si substrate 200, back passivation/tunneling layer 204, and BSF layer 208 form the back oxide tunneling junction. In one embodiment, the thickness of BSF layer 208 is between 3 and 30 nm. The existence of BSF layer 208 improves the back-side passivation and allows good ohmic contact to a subsequently deposited back transparent conductive oxide (TCO) layer. Similar to emitter layer 206, the region within BSF layer 208 that is adjacent to back passivation/tunneling layer 204 is either undoped or having a lower doping concentration, and the region that is away from back passivation/tunneling layer 204 has a higher doping concentration. The lower doping concentration ensures minimum defect density at the interface between back passivation/tunneling layer 204 and BSF layer 208, and the higher concentration on the other side ensures good ohmic contact to the back TCO layer. In one embodiment, the doping concentration of BSF layer 208 varies from zero to 5×1020/cm3. In addition to a-Si, it is also possible to use other material to form BSF layer 208. In one embodiment, a layer of microcrystalline Si is deposited on the surface of back passivation/tunneling layer 204 to form BSF layer 208. Using microcrystalline Si material for BSF layer 208 can ensure lower series resistance and better ohmic contact with the back TCO layer. In a further embodiment, BSF layer 208 can include amorphous silicon carbide or hydrogenated amorphous silicon carbide (a-Si1-xCx:H).
In operation 2E, a layer of TCO material is deposited on the surface of emitter layer 206 to form a conductive anti-reflection layer 210. Examples of TCO include, but are not limited to: indium-tin-oxide (ITO), tin-oxide (SnOx), aluminum doped zinc-oxide (ZnO:Al or AZO), or gallium doped zinc-oxide (ZnO:Ga).
In operation 2F, back-side TCO layer 212 is formed on the surface of BSF layer 208.
In operation 2G, front-side electrode 214 and back-side electrode 216 are formed on the surfaces of TCO layers 210 and 212, respectively. In one embodiment, front-side electrode 214 and/or back-side electrode 216 can include Cu grid formed using various techniques, including, but not limited to: electroless plating, electroplating, sputtering, and evaporation. In a further embodiment, the Cu grid can include a multilayer structure, such as a Cu/Sn bi-layer structure, or a Cu/Ag bi-layer structure. Note that the plated Cu metal grids typically have a cross section that is square in shape, and is at least 20 μm in height and can be as tall as 50 μm or higher. This results in the cross-section area of the plated Cu grid being much larger than conventional screen-printed Ag grid and, thus, the series resistance of the plated Cu grid being much smaller than that of the Ag grid. Moreover, the resistivity of the plated Cu is around 1.8×10−6 ohm-cm, which is close to that of pure Cu.
To improve the adhesion of the copper grids to the TCO layers and prevent the diffusion of copper to silicon layers under the TCO, an optional barrier/adhesion layer can be formed between the copper grids and TCO. Materials used to form this optional barrier/adhesion layer include, but are not limited to: Ti, TiN, TiW, Ta, TaN, WN, Co, or their combination. In one embodiment, an optional barrier/adhesion layer is deposited on top of the TCO layers 210 and 212, followed by the deposition of copper grids 214 and 216.
Note that the front-side electrode of a solar cell typically includes thin grid lines of so-called fingers connected to wider metal lines, which are called busbars. The typical width of the finger grid lines is between 40 and 100 μm, and the typical width of the busbars is between 1 and 2 mm. Compared with solar cells used for non-CPV (1-sun) application, in order to reduce the series resistance, certain tradeoffs are needed for solar cells used for CPV application. One way to reduce the series resistance is to increase the number of grid lines by reducing the pitch between the fingers. The other way is to increase the number of busbars, thus decreasing the length of each section of the grid lines. However, both methods increase the total area of the electrode, leading to increased shading effect. For 1-sun applications, conventional solar cells with printed silver electrodes typically have a distance between the grid lines between 2 and 2.5 mm, and a sectional length of the grid lines between 30 and 35 mm. For CPV applications, such as 5 to 10 sun concentration, the pitch and the length of the grid lines are reduced to less than 1 mm and 25 mm, respectively. This can significantly increase shading. However, in embodiments of the present invention, by using plated copper electrodes, the need for increasing the density of the grid lines or busbars can be reduced to none, thus leading to a higher overall conversion efficiency.
To minimize shading, in one embodiment, front-side electrode 214 includes parallel metal grid lines having cross sections with curved perimeters. In other words, the metal grid lines have a curved surface. At any given point of the curved surface, the angle formed by a plane, which is tangent to the curved surface, and the solar cell surface is ideally between 45° and 90°. In a further embodiment, the angle is between 67.5° and 90°. This ensures that incident sunlight hitting any point on the curved surface of the grid lines is reflected downward to be absorbed by the solar cell. The vertical aspect ratio of the metal grid lines is greater than 2.5 to minimize resistive loss.
In addition to the process shown in
In operation 3A, an SG-Si substrate 300 is prepared using a process similar to that of operation 2A, except that no surface texturing is formed.
In operation 3B, a thin layer of heavily doped c-Si, layer 302, is epitaxially grown on SG-Si substrate 300. In one embodiment, heavily doped c-Si epitaxial (EPI) layer 302 is formed using a chemical-vapor-deposition (CVD) epitaxial process. Various types of Si compounds, such as SiH4, SiH2Cl2, and SiHCl3, can be used as a precursor in the CVD process to form heavily doped c-Si EPI layer 302. In one embodiment, SiHCl3 (TCS) is used due to its abundance and low cost. The thickness of heavily doped c-Si EPI layer 302 can be between 1 μm and 5 μm. The doping type of heavily doped c-Si EPI layer 302 is the same as the doping type of SG-Si substrate 300. In one embodiment, heavily doped c-Si EPI layer 302 is n-type doped. The doping concentration of heavily doped c-Si EPI layer 302 can be between 1×1017/cm3 and 1×1020/cm3. The doping level should not exceed a maximum limit, which may cause misfit dislocations in the film. Heavily doped c-Si EPI layer 302 can act as a back surface field (BSF), an impurity barrier, and a contaminant getter layer for reducing electron-hole recombination at the surface of the subsequently grown base layer.
In operation 3C, a layer of lightly doped c-Si is epitaxially grown on heavily doped c-Si EPI layer 302 to form a base layer 304. The process used for the growth of base layer 304 is similar to the one used for the growth of heavily doped c-Si EPI layer 302. In one embodiment, a CVD EPI process is used to form base layer 304. The thickness of base layer 304 can be between 20 μm and 100 μm. The doping type of base layer 304 is the same as the doping type of SG-Si substrate 300 and heavily doped c-Si EPI layer 302. In one embodiment, base layer 304 is n-type doped, which can provide better carrier lifetime, higher Voc, and higher solar cell efficiency. The doping concentration of base layer 304 can be between 1×1015/cm3 and 1×1017/cm3. In a further embodiment, base layer 304 can be a layer of c-Si with graded doping. The doping concentration of base layer 304 can be between 1×1014/cm3 and 1×1018/cm3, with the region adjacent to heavily doped c-Si EPI layer 302 having a higher doping concentration and the opposite side having a lower doping concentration. Such a doping profile results in an electric field that allows the generated minority carriers to drift toward the junction, thus increasing the Jsc. In a further embodiment, a thin layer of intrinsic EPI c-Si is inserted within graded-doped base layer 304. The thickness of the intrinsic EPI c-Si layer can be between 1 and 10 nm. The insertion of the intrinsic EPI c-Si layer ensures better film quality of graded-doped base layer 304 because it limits defect propagation and lattice mismatch during the EPI growth of base layer 304. Note that the intrinsic EPI c-Si layer can be deposited at any point during the growth of graded-doped base layer 304 by changing the gas flow into the epitaxial chamber
After EPI growth of base layer 304, in operation 3D, SG-Si substrate 300 and heavily doped c-Si EPI layer 302 are removed. Various techniques can be used to remove SG-Si substrate 300 and heavily doped c-Si EPI layer 302, including, but not limited to: mechanical grinding, chemical wet etching, dry etching, and chemical mechanical polishing. In one embodiment, a mechanical backgrinding method is used to remove SG-Si substrate 300 and heavily doped c-Si EPI layer 302. Subsequently, a wet chemical etching process is used to remove all backgrind damage which may result in increased minority-carrier recombination, thus degrading the solar cell performance. Solutions used in the wet chemical etching include, but are not limited to: sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH), and a mixture of nitric acid and hydrofluoric acid (HNO3:HF).
In operation 3E, the front and back surfaces of base layer 304 are textured to maximize light absorption inside the solar cell, thus further enhancing solar cell conversion efficiency. The shapes of the surface texture can be pyramids or inverted pyramids, which are randomly or regularly distributed on the front and back surfaces of base layer 304.
The rest of the fabrication process is similar to the one shown in
In operation 3G, emitter layer 310 and BSF layer 312 are formed using a process similar to the one used in operations 2C and 2D.
In operation 3H, front and back TCO layers 314 and 316 are formed using a process similar to the one used in operations 2E and 2F.
In operation 3I, front and back electrodes 318 and 320 are formed using a process similar to the one used in operation 2G.
In addition to the examples shown in
The advantages of the tunneling-junction solar cells include high conversation efficiency (up to 24%), and a low temperature coefficient (as low as −0.20% PC), which is less than half of that of conventional crystalline Si-based solar cells. The low temperature coefficient allows the tunneling-junction solar cells to convert solar energy to electricity more efficiently in comparison with conventional solar cells at elevated temperature. For example, at an elevated temperature of 75° C., the tunneling-junction solar cells produce 12-15% more electricity than conventional solar cells with the same nameplate power. Note that the nameplate power is the value of the produced power under standard operation condition (at 25° C.).
The aforementioned copper grids can also benefit solar cells with other types of junction, such as p-n junctions formed by diffusion, for CPV application. These solar cells may not include TCO layers. In such a scenario, the copper grid lines are situated above the silicon layer (such as the emitter), and a barrier layer comprising Ti, TiN, TiW, Ta, TaN, WN, Ni, Co, or their combination is formed between the silicon layer and the copper grid.
CPV Module
Concentrator 502 can be implemented using various available optical focusing techniques, including but not limited to reflection or refraction though an optical media. For example, concentrator 502 can be a focusing lens or mirror. In
Solar cells 504-512 can be any type of solar cells. In one embodiment, solar cells 504-512 include tunneling-junction solar cells, which can have the junction at either the frontside or the backside. The tunneling-junction solar cells have a much lower temperature coefficient (as low as −0.20% PC), thus having a higher cell efficiency at an elevated temperature compared with other types of solar cells. Note that, due to the existence of concentrator 502, solar cells 504-512 often work at a higher temperature even with cooling (the cooling system is not shown in
The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.
This application/patent is a continuation application of application Ser. No. 13/480,393, entitled “TUNNELING-JUNCTION SOLAR CELL WITH COPPER GRID FOR CONCENTRATED PHOTOVOLTAIC APPLICATION,” by inventors Jianming Fu, Zheng Xu, Jiunn Benjamin Heng, and Chentao Yu, filed 24 May 2012, which claims the benefit of U.S. Provisional Application No. 61/492,752, entitled “Tunneling Junction Solar Cell with Copper Grid for Concentrated Photovoltaic Application” by inventors Jianming Fu, Zheng Xu, Jiunn Benjamin Heng, and Chentao Yu, filed 2 Jun. 2011.
Number | Name | Date | Kind |
---|---|---|---|
819360 | Mayer | Mar 1902 | A |
2626907 | De Groote | Jan 1953 | A |
2938938 | Dickson | May 1960 | A |
3094439 | Mann | Jun 1963 | A |
3116171 | Nielson | Dec 1963 | A |
3459597 | Baron | Aug 1969 | A |
3961997 | Chu | Jun 1976 | A |
3969163 | Wakefield | Jul 1976 | A |
4015280 | Matsushita | Mar 1977 | A |
4082568 | Lindmayer | Apr 1978 | A |
4124410 | Kotval | Nov 1978 | A |
4124455 | Lindmayer | Nov 1978 | A |
4193975 | Kotval | Mar 1980 | A |
4200621 | Liaw | Apr 1980 | A |
4213798 | Williams | Jul 1980 | A |
4251285 | Yoldas | Feb 1981 | A |
4284490 | Weber | Aug 1981 | A |
4315096 | Tyan | Feb 1982 | A |
4336648 | Pschunder | Jun 1982 | A |
4342044 | Ovshinsky | Jul 1982 | A |
4431858 | Gonzalez | Feb 1984 | A |
4514579 | Hanak | Apr 1985 | A |
4540843 | Gochermann | Sep 1985 | A |
4567642 | Dilts | Feb 1986 | A |
4571448 | Barnett | Feb 1986 | A |
4577051 | Hartman | Mar 1986 | A |
4586988 | Nath | May 1986 | A |
4589191 | Green | May 1986 | A |
4612409 | Hamakawa | Sep 1986 | A |
4617421 | Nath | Oct 1986 | A |
4633033 | Nath | Dec 1986 | A |
4652693 | Bar-On | Mar 1987 | A |
4657060 | Kaucic | Apr 1987 | A |
4667060 | Spitzer | May 1987 | A |
4670096 | Schwirtlich | Jun 1987 | A |
4694115 | Lillington | Sep 1987 | A |
4753683 | Ellion | Jun 1988 | A |
4771017 | Tobin | Sep 1988 | A |
4784702 | Henri | Nov 1988 | A |
4877460 | Flodl | Oct 1989 | A |
4933061 | Kulkarni | Jun 1990 | A |
4968384 | Asano | Nov 1990 | A |
5053355 | von Campe | Oct 1991 | A |
5057163 | Barnett | Oct 1991 | A |
5075763 | Spitzer | Dec 1991 | A |
5084107 | Deguchi | Jan 1992 | A |
5118361 | Fraas | Jun 1992 | A |
5131933 | Floedl | Jul 1992 | A |
5178685 | Borenstein | Jan 1993 | A |
5181968 | Nath | Jan 1993 | A |
5213628 | Noguchi | May 1993 | A |
5217539 | Fraas | Jun 1993 | A |
5279682 | Wald | Jan 1994 | A |
5286306 | Menezes | Feb 1994 | A |
5364518 | Hartig | Nov 1994 | A |
5401331 | Ciszek | Mar 1995 | A |
5455430 | Noguchi | Oct 1995 | A |
5461002 | Safir | Oct 1995 | A |
5563092 | Ohmi | Oct 1996 | A |
5576241 | Sakai | Nov 1996 | A |
5627081 | Tsuo | May 1997 | A |
5676766 | Probst | Oct 1997 | A |
5681402 | Ichinose | Oct 1997 | A |
5698451 | Hanoka | Dec 1997 | A |
5705828 | Noguchi | Jan 1998 | A |
5726065 | Szlufcik | Mar 1998 | A |
5808315 | Murakami | Sep 1998 | A |
5814195 | Lehan | Sep 1998 | A |
5903382 | Tench | May 1999 | A |
5935345 | Kuznicki | Aug 1999 | A |
6034322 | Pollard | Mar 2000 | A |
6091019 | Sakata | Jul 2000 | A |
6140570 | Kariya | Oct 2000 | A |
6232545 | Samaras | May 2001 | B1 |
6303853 | Fraas | Oct 2001 | B1 |
6333457 | Mulligan | Dec 2001 | B1 |
6410843 | Kishi | Jun 2002 | B1 |
6441297 | Keller | Aug 2002 | B1 |
6468828 | Glatfelter | Oct 2002 | B1 |
6488824 | Hollars | Dec 2002 | B1 |
6538193 | Fraas | Mar 2003 | B1 |
6552414 | Horzel | Apr 2003 | B1 |
6586270 | Tsuzuki | Jul 2003 | B2 |
6620645 | Chandra | Sep 2003 | B2 |
6672018 | Shingleton | Jan 2004 | B2 |
6683360 | Dierickx | Jan 2004 | B1 |
6736948 | Barrett | May 2004 | B2 |
6803513 | Beernink | Oct 2004 | B2 |
6841051 | Crowley | Jan 2005 | B2 |
7030413 | Nakamura | Apr 2006 | B2 |
7128975 | Inomata | Oct 2006 | B2 |
7164150 | Terakawa | Jan 2007 | B2 |
7328534 | Dinwoodie | Feb 2008 | B2 |
7388146 | Fraas | Jun 2008 | B2 |
7399385 | German | Jul 2008 | B2 |
7534632 | Hu | May 2009 | B2 |
7635810 | Luch | Dec 2009 | B2 |
7737357 | Cousins | Jun 2010 | B2 |
7749883 | Meeus | Jul 2010 | B2 |
7769887 | Bhattacharyya | Aug 2010 | B1 |
7772484 | Li | Aug 2010 | B2 |
7777128 | Montello | Aug 2010 | B2 |
7825329 | Basol | Nov 2010 | B2 |
7829781 | Montello | Nov 2010 | B2 |
7829785 | Basol | Nov 2010 | B2 |
7872192 | Fraas | Jan 2011 | B1 |
7905995 | German | Mar 2011 | B2 |
7977220 | Sanjurjo | Jul 2011 | B2 |
8070925 | Hoffman | Dec 2011 | B2 |
8115093 | Gui | Feb 2012 | B2 |
8152536 | Scherer | Apr 2012 | B2 |
8168880 | Jacobs | May 2012 | B2 |
8182662 | Crowley | May 2012 | B2 |
8196360 | Metten | Jun 2012 | B2 |
8209920 | Krause | Jul 2012 | B2 |
8222513 | Luch | Jul 2012 | B2 |
8222516 | Cousins | Jul 2012 | B2 |
8258050 | Cho | Sep 2012 | B2 |
8343795 | Luo | Jan 2013 | B2 |
8586857 | Everson | Nov 2013 | B2 |
8671630 | Lena | Mar 2014 | B2 |
8686283 | Heng | Apr 2014 | B2 |
8815631 | Cousins | Aug 2014 | B2 |
9029181 | Rhodes | May 2015 | B2 |
9147788 | DeGroot | Sep 2015 | B2 |
9287431 | Mascarenhas | Mar 2016 | B2 |
20010008143 | Sasaoka | Jul 2001 | A1 |
20020015881 | Nakamura | Feb 2002 | A1 |
20020072207 | Andoh | Jun 2002 | A1 |
20020086456 | Cunningham | Jul 2002 | A1 |
20020176404 | Girard | Nov 2002 | A1 |
20020189939 | German | Dec 2002 | A1 |
20030000568 | Gonsiorawski | Jan 2003 | A1 |
20030000571 | Wakuda | Jan 2003 | A1 |
20030034062 | Stern | Feb 2003 | A1 |
20030042516 | Forbes | Mar 2003 | A1 |
20030070705 | Hayden | Apr 2003 | A1 |
20030097447 | Johnston | May 2003 | A1 |
20030116185 | Oswald | Jun 2003 | A1 |
20030168578 | Taguchi | Sep 2003 | A1 |
20030183270 | Falk | Oct 2003 | A1 |
20030201007 | Fraas | Oct 2003 | A1 |
20040065363 | Fetzer | Apr 2004 | A1 |
20040103937 | Bilyalov | Jun 2004 | A1 |
20040112426 | Hagino | Jun 2004 | A1 |
20040123897 | Ojima | Jul 2004 | A1 |
20040135979 | Hazelton | Jul 2004 | A1 |
20040152326 | Inomata | Aug 2004 | A1 |
20040185683 | Nakamura | Sep 2004 | A1 |
20040200520 | Mulligan | Oct 2004 | A1 |
20050009319 | Abe | Jan 2005 | A1 |
20050012095 | Niira | Jan 2005 | A1 |
20050022861 | Rose | Feb 2005 | A1 |
20050061665 | Pavani | Mar 2005 | A1 |
20050064247 | Sane | Mar 2005 | A1 |
20050074954 | Yamanaka | Apr 2005 | A1 |
20050109388 | Murakami | May 2005 | A1 |
20050133084 | Joge | Jun 2005 | A1 |
20050178662 | Wurczinger | Aug 2005 | A1 |
20050189015 | Rohatgi | Sep 2005 | A1 |
20050199279 | Yoshimine | Sep 2005 | A1 |
20050252544 | Rohatgi | Nov 2005 | A1 |
20050257823 | Zwanenburg | Nov 2005 | A1 |
20060012000 | Estes | Jan 2006 | A1 |
20060060238 | Hacke | Mar 2006 | A1 |
20060060791 | Hazelton | Mar 2006 | A1 |
20060130891 | Carlson | Jun 2006 | A1 |
20060154389 | Doan | Jul 2006 | A1 |
20060213548 | Bachrach | Sep 2006 | A1 |
20060231803 | Wang | Oct 2006 | A1 |
20060255340 | Manivannan | Nov 2006 | A1 |
20060260673 | Takeyama | Nov 2006 | A1 |
20060272698 | Durvasula | Dec 2006 | A1 |
20060283496 | Okamoto | Dec 2006 | A1 |
20060283499 | Terakawa | Dec 2006 | A1 |
20070023081 | Johnson | Feb 2007 | A1 |
20070023082 | Manivannan | Feb 2007 | A1 |
20070108437 | Tavkhelidze | May 2007 | A1 |
20070110975 | Schneweis | May 2007 | A1 |
20070132034 | Curello | Jun 2007 | A1 |
20070137699 | Manivannan | Jun 2007 | A1 |
20070148336 | Bachrach | Jun 2007 | A1 |
20070186968 | Nakauchi | Aug 2007 | A1 |
20070186970 | Takahashi | Aug 2007 | A1 |
20070202029 | Burns | Aug 2007 | A1 |
20070235829 | Levine | Oct 2007 | A1 |
20070256728 | Cousins | Nov 2007 | A1 |
20070274504 | Maes | Nov 2007 | A1 |
20070283996 | Hachtmann | Dec 2007 | A1 |
20070283997 | Hachtmann | Dec 2007 | A1 |
20080000522 | Johnson | Jan 2008 | A1 |
20080041436 | Lau | Feb 2008 | A1 |
20080041437 | Yamaguchi | Feb 2008 | A1 |
20080047602 | Krasnov | Feb 2008 | A1 |
20080047604 | Korevaar | Feb 2008 | A1 |
20080053519 | Pearce | Mar 2008 | A1 |
20080061293 | Ribeyron | Mar 2008 | A1 |
20080092947 | Lopatin | Apr 2008 | A1 |
20080121272 | Besser | May 2008 | A1 |
20080121276 | Lopatin | May 2008 | A1 |
20080121932 | Ranade | May 2008 | A1 |
20080128013 | Lopatin | Jun 2008 | A1 |
20080149161 | Nishida | Jun 2008 | A1 |
20080156370 | Abdallah | Jul 2008 | A1 |
20080173347 | Korevaar | Jul 2008 | A1 |
20080173350 | Choi | Jul 2008 | A1 |
20080196757 | Yoshimine | Aug 2008 | A1 |
20080202577 | Hieslmair | Aug 2008 | A1 |
20080202582 | Noda | Aug 2008 | A1 |
20080216891 | Harkness | Sep 2008 | A1 |
20080230122 | Terakawa | Sep 2008 | A1 |
20080251114 | Tanaka | Oct 2008 | A1 |
20080251117 | Schubert | Oct 2008 | A1 |
20080264477 | Moslehi | Oct 2008 | A1 |
20080276983 | Drake | Nov 2008 | A1 |
20080283115 | Fukawa | Nov 2008 | A1 |
20080302030 | Stancel | Dec 2008 | A1 |
20080303503 | Wolfs | Dec 2008 | A1 |
20080308145 | Krasnov | Dec 2008 | A1 |
20090007965 | Rohatgi | Jan 2009 | A1 |
20090056805 | Barnett | Mar 2009 | A1 |
20090078318 | Meyers | Mar 2009 | A1 |
20090084439 | Lu | Apr 2009 | A1 |
20090101872 | Young | Apr 2009 | A1 |
20090139512 | Lima | Jun 2009 | A1 |
20090151783 | Lu | Jun 2009 | A1 |
20090155028 | Boguslavskiy | Jun 2009 | A1 |
20090160259 | Ravindranath | Jun 2009 | A1 |
20090188561 | Aiken | Jul 2009 | A1 |
20090221111 | Frolov | Sep 2009 | A1 |
20090229854 | Fredenberg | Sep 2009 | A1 |
20090239331 | Xu | Sep 2009 | A1 |
20090250108 | Zhou | Oct 2009 | A1 |
20090255574 | Yu | Oct 2009 | A1 |
20090283138 | Lin | Nov 2009 | A1 |
20090283145 | Kim | Nov 2009 | A1 |
20090293948 | Tucci | Dec 2009 | A1 |
20090301549 | Moslehi | Dec 2009 | A1 |
20090308439 | Adibi | Dec 2009 | A1 |
20090317934 | Scherff | Dec 2009 | A1 |
20090320897 | Shimomura | Dec 2009 | A1 |
20100006145 | Lee | Jan 2010 | A1 |
20100015756 | Weidman | Jan 2010 | A1 |
20100043863 | Wudu | Feb 2010 | A1 |
20100065111 | Fu | Mar 2010 | A1 |
20100068890 | Stockum | Mar 2010 | A1 |
20100084009 | Carlson | Apr 2010 | A1 |
20100087031 | Veschetti | Apr 2010 | A1 |
20100108134 | Ravi | May 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100124619 | Xu | May 2010 | A1 |
20100132774 | Borden | Jun 2010 | A1 |
20100132792 | Kim | Jun 2010 | A1 |
20100147364 | Gonzalez | Jun 2010 | A1 |
20100154869 | Oh | Jun 2010 | A1 |
20100169478 | Saha | Jul 2010 | A1 |
20100175743 | Gonzalez | Jul 2010 | A1 |
20100186802 | Borden | Jul 2010 | A1 |
20100193014 | Johnson | Aug 2010 | A1 |
20100218799 | Stefani | Sep 2010 | A1 |
20100224230 | Luch | Sep 2010 | A1 |
20100229914 | Adriani | Sep 2010 | A1 |
20100236612 | Khajehoddin | Sep 2010 | A1 |
20100240172 | Rana | Sep 2010 | A1 |
20100269904 | Cousins | Oct 2010 | A1 |
20100279492 | Yang | Nov 2010 | A1 |
20100300506 | Heng | Dec 2010 | A1 |
20100300507 | Heng | Dec 2010 | A1 |
20100313877 | Bellman | Dec 2010 | A1 |
20100326518 | Juso | Dec 2010 | A1 |
20110005569 | Sauar | Jan 2011 | A1 |
20110005920 | Ivanov | Jan 2011 | A1 |
20110073175 | Hilali | Mar 2011 | A1 |
20110088762 | Singh | Apr 2011 | A1 |
20110146759 | Lee | Jun 2011 | A1 |
20110146781 | Laudisio | Jun 2011 | A1 |
20110156188 | Tu | Jun 2011 | A1 |
20110168250 | Lin | Jul 2011 | A1 |
20110168261 | Welser | Jul 2011 | A1 |
20110174374 | Harder | Jul 2011 | A1 |
20110186112 | Aernouts | Aug 2011 | A1 |
20110220182 | Lin | Sep 2011 | A1 |
20110245957 | Porthouse | Oct 2011 | A1 |
20110259419 | Hagemann | Oct 2011 | A1 |
20110272012 | Heng | Nov 2011 | A1 |
20110277688 | Trujillo | Nov 2011 | A1 |
20110277816 | Xu | Nov 2011 | A1 |
20110277825 | Fu | Nov 2011 | A1 |
20110284064 | Engelhart | Nov 2011 | A1 |
20110297224 | Miyamoto | Dec 2011 | A1 |
20110297227 | Pysch | Dec 2011 | A1 |
20110308573 | Jaus | Dec 2011 | A1 |
20120000502 | Wiedeman | Jan 2012 | A1 |
20120012174 | Wu | Jan 2012 | A1 |
20120028461 | Ritchie | Feb 2012 | A1 |
20120031480 | Tisler | Feb 2012 | A1 |
20120040487 | Asthana | Feb 2012 | A1 |
20120060911 | Fu | Mar 2012 | A1 |
20120073975 | Ganti | Mar 2012 | A1 |
20120080083 | Liang | Apr 2012 | A1 |
20120085384 | Beitel | Apr 2012 | A1 |
20120122262 | Kang | May 2012 | A1 |
20120125391 | Pinarbasi | May 2012 | A1 |
20120145233 | Syn | Jun 2012 | A1 |
20120152349 | Cao | Jun 2012 | A1 |
20120152752 | Keigler | Jun 2012 | A1 |
20120167986 | Meakin | Jul 2012 | A1 |
20120192932 | Wu | Aug 2012 | A1 |
20120240995 | Coakley | Sep 2012 | A1 |
20120248497 | Zhou | Oct 2012 | A1 |
20120279443 | Kornmeyer | Nov 2012 | A1 |
20120279548 | Munch | Nov 2012 | A1 |
20120285517 | Souza | Nov 2012 | A1 |
20120305060 | Fu et al. | Dec 2012 | A1 |
20120318319 | Pinarbasi | Dec 2012 | A1 |
20120318340 | Heng | Dec 2012 | A1 |
20120319253 | Mizuno | Dec 2012 | A1 |
20120325282 | Snow | Dec 2012 | A1 |
20130000705 | Shappir | Jan 2013 | A1 |
20130014802 | Zimmerman | Jan 2013 | A1 |
20130056051 | Jin | Mar 2013 | A1 |
20130096710 | Pinarbasi | Apr 2013 | A1 |
20130112239 | Liptac | May 2013 | A1 |
20130130430 | Moslehi | May 2013 | A1 |
20130139878 | Bhatnagar | Jun 2013 | A1 |
20130152996 | DeGroot | Jun 2013 | A1 |
20130160826 | Beckerman | Jun 2013 | A1 |
20130174897 | You | Jul 2013 | A1 |
20130206213 | He | Aug 2013 | A1 |
20130206221 | Gannon | Aug 2013 | A1 |
20130213469 | Kramer | Aug 2013 | A1 |
20130220401 | Scheulov | Aug 2013 | A1 |
20130228221 | Moslehi | Sep 2013 | A1 |
20130247955 | Baba | Sep 2013 | A1 |
20130269771 | Cheun | Oct 2013 | A1 |
20130291743 | Endo | Nov 2013 | A1 |
20140000682 | Zhao | Jan 2014 | A1 |
20140053899 | Haag | Feb 2014 | A1 |
20140066265 | Oliver | Mar 2014 | A1 |
20140102524 | Xie | Apr 2014 | A1 |
20140124013 | Morad | May 2014 | A1 |
20140124014 | Morad | May 2014 | A1 |
20140154836 | Kim | Jun 2014 | A1 |
20140196768 | Heng | Jul 2014 | A1 |
20140242746 | Albadri | Aug 2014 | A1 |
20140318611 | Moslehi | Oct 2014 | A1 |
20140345674 | Yang | Nov 2014 | A1 |
20140349441 | Fu | Nov 2014 | A1 |
20150007879 | Kwon | Jan 2015 | A1 |
20150020877 | Moslehi | Jan 2015 | A1 |
20150075599 | Yu | Mar 2015 | A1 |
20150090314 | Yang | Apr 2015 | A1 |
20150096613 | Tjahjono | Apr 2015 | A1 |
20150114444 | Lentine | Apr 2015 | A1 |
20150171230 | Kapur | Jun 2015 | A1 |
20150214409 | Pfeiffer | Jul 2015 | A1 |
20150270410 | Heng | Sep 2015 | A1 |
20150280641 | Garg | Oct 2015 | A1 |
20150349145 | Morad | Dec 2015 | A1 |
20150349153 | Morad | Dec 2015 | A1 |
20150349161 | Morad | Dec 2015 | A1 |
20150349162 | Morad | Dec 2015 | A1 |
20150349167 | Morad | Dec 2015 | A1 |
20150349168 | Morad | Dec 2015 | A1 |
20150349169 | Morad | Dec 2015 | A1 |
20150349170 | Morad | Dec 2015 | A1 |
20150349171 | Morad | Dec 2015 | A1 |
20150349172 | Morad | Dec 2015 | A1 |
20150349173 | Morad | Dec 2015 | A1 |
20150349174 | Morad | Dec 2015 | A1 |
20150349175 | Morad | Dec 2015 | A1 |
20150349176 | Morad | Dec 2015 | A1 |
20150349190 | Morad | Dec 2015 | A1 |
20150349193 | Morad | Dec 2015 | A1 |
20150349701 | Morad | Dec 2015 | A1 |
20150349702 | Morad | Dec 2015 | A1 |
20150349703 | Morad | Dec 2015 | A1 |
20160190354 | Agrawal | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1253381 | May 2000 | CN |
1416179 | Oct 2001 | CN |
101233620 | Jul 2008 | CN |
101553933 | Oct 2009 | CN |
100580957 | Jan 2010 | CN |
101305454 | May 2010 | CN |
102088040 | Jun 2011 | CN |
102263157 | Nov 2011 | CN |
104409402 | Mar 2015 | CN |
4030713 | Apr 1992 | DE |
102006009194 | Aug 2007 | DE |
202007002897 | Aug 2008 | DE |
102008045522 | Mar 2010 | DE |
102010061317 | Jun 2012 | DE |
10201201051 | Nov 2013 | DE |
102012010151 | Nov 2013 | DE |
1770791 | Apr 2007 | EP |
1806684 | Aug 2007 | EP |
2071635 | Jun 2009 | EP |
2113946 | Nov 2009 | EP |
2362430 | Aug 2011 | EP |
2385561 | Nov 2011 | EP |
2387079 | Nov 2011 | EP |
2479796 | Jul 2012 | EP |
2626907 | Aug 2013 | EP |
2479796 | Jul 2015 | EP |
2626907 | Aug 2015 | EP |
5789269 | Jun 1982 | JP |
H04245683 | Sep 1992 | JP |
06196766 | Jul 1994 | JP |
H07249788 | Sep 1995 | JP |
10004204 | Jan 1998 | JP |
H1131834 | Feb 1999 | JP |
2000164902 | Jun 2000 | JP |
2002057357 | Feb 2002 | JP |
2005159312 | Jun 2005 | JP |
2006324504 | Nov 2006 | JP |
2008135655 | Jun 2008 | JP |
2009054748 | Mar 2009 | JP |
2009177225 | Aug 2009 | JP |
2013526045 | Jun 2013 | JP |
2013161855 | Aug 2013 | JP |
2013536512 | Sep 2013 | JP |
2013537000 | Sep 2013 | JP |
2013219378 | Oct 2013 | JP |
2013233553 | Nov 2013 | JP |
2013239694 | Nov 2013 | JP |
2013247231 | Dec 2013 | JP |
20050122721 | Dec 2005 | KR |
20060003277 | Jan 2006 | KR |
20090011519 | Feb 2009 | KR |
1991017839 | Nov 1991 | WO |
9120097 | Dec 1991 | WO |
2003083953 | Oct 2003 | WO |
2006097189 | Sep 2006 | WO |
2008089657 | Jul 2008 | WO |
2009094578 | Jul 2009 | WO |
2009150654 | Dec 2009 | WO |
2009150654 | Dec 2009 | WO |
2010070015 | Jun 2010 | WO |
2010075606 | Jul 2010 | WO |
2010075606 | Jul 2010 | WO |
2010104726 | Sep 2010 | WO |
2010123974 | Oct 2010 | WO |
2010123974 | Oct 2010 | WO |
2011005447 | Jan 2011 | WO |
2011005447 | Jan 2011 | WO |
2011008881 | Jan 2011 | WO |
2011008881 | Jan 2011 | WO |
2011053006 | May 2011 | WO |
2011123646 | Oct 2011 | WO |
2013020590 | Feb 2013 | WO |
2013020590 | Feb 2013 | WO |
2010085949 | Mar 2013 | WO |
2013046351 | Apr 2013 | WO |
2014066265 | May 2014 | WO |
2014074826 | Jul 2014 | WO |
2014110520 | Jul 2014 | WO |
2014117138 | Jul 2014 | WO |
2015183827 | Dec 2015 | WO |
2016090332 | Jun 2016 | WO |
Entry |
---|
Namigashira (JP06196766A), 1994, English equivalent of the abstract. |
Meyerson et al. “Nonequilibrium boron doping effects in low-temperature epitaxial silicon”, Appl. Phys. Lett. 50 (2), p. 113 (1987). |
Li, “Surface and Bulk Passsivation of Multicrystalline Silicon Solar Cells by Silicon Nitride (H) Layer: Modeling and Experiments”, Ph.D. dissertation, N.J. Inst. of Tech., Jan. 2009. |
Kanani, Nasser. Electroplating: Basic Principles, Processes and Practice, Chapter 8—“Coating Thickness and its Measurement,” 2004, pp. 247-291. |
P. Borden et al. “Polysilicon Tunnel Junctions as Alternates to Diffused Junctions” Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Sep. 1, 2008-Sep. 5, 2008, pp. 1149-1152. |
L. Korte et al. “Overview on a-Se:H/c heterojunction solar cells—physics and technology”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Sep. 3, 2007-Sep. 7, 2007, pp. 859-865. |
Beaucarne G et al: ‘Epitaxial thin-film Si solar cells’ Thin Solid Films, Elsevier-Sequoia S.A. Lausanne, CH LNKD—DOI:10.1016/J.TSF.2005.12.003, vol. 511-512, Jul. 26, 2006 (Jul. 26, 2006), pp. 533-542, XP025007243 ISSN: 0040-6090 [retrieved on Jul. 26, 2006]. |
Chabal, Yves J. et al., ‘Silicon Surface and Interface Issues for Nanoelectronics,’ The Electrochemical Society Interface, Spring 2005, pp. 31-33. |
Collins English Dictionary (Convex. (2000). In Collins English Dictionary. http://search.credoreference.com/content/entry/hcengdict/convex/0 on Oct. 18, 2014). |
Cui, ‘Chapter 7 Dopant diffusion’, publically available as early as Nov. 4, 2010 at <https://web.archive.org/web/20101104143332/http://ece.uwaterloo.ca/˜bcui/content/NE%20343/Chapter/%207%20Dopant%20 diffusion%20—%20l.pptx> and converted to PDF. |
Davies, P.C.W., ‘Quantum tunneling time,’ Am. J. Phys. 73, Jan. 2005, pp. 23-27. |
Dosaj V D et al: ‘Single Crystal Silicon Ingot Pulled From Chemically-Upgraded Metallurgical-Grade Silicon’ Conference Record of the IEEE Photovoltaic Specialists Conference, May 6, 1975 (May 6, 1975), pp. 275-279, XP001050345. |
Green, Martin A. et al., ‘High-Efficiency Silicon Solar Cells,’ IEEE Transactions on Electron Devices, vol. ED-31, No. 5, May 1984, pp. 679-683. |
Hamm, Gary, Wei, Lingyum, Jacques, Dave, Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells, EU PVSEC Proceedings, Presented Sep. 2009. |
JCS Pires, J Otubo, AFB Braga, PR Mei; The purification of metallurgical grade silicon by electron beam melting, J of Mats Process Tech 169 (2005) 16-20. |
Khattak, C. P. et al., “Refining Molten Metallurgical Grade Silicon for use as Feedstock for Photovoltaic Applications”, 16th E.C. Photovoltaic Solar Energy Conference, May 1-5, 2000, pp. 1282-1283. |
Merriam-Webster online dictionary—“mesh”. (accessed Oct. 8, 2012). |
Mueller, Thomas, et al. “Application of wide-band gap hydrogenated amorphous silicon oxide layers to heterojunction solar cells for high quality passivation.” Photovoltaic Specialists Conference, 2008. PVSC'08. 33rd IEEE. IEEE, 2008. |
Mueller, Thomas, et al. “High quality passivation for heteroj unction solar cells by hydrogenated amorphous silicon suboxide films.” Applied Physics Letters 92.3 (2008): 033504-033504. |
Munzer, K.A. “High Throughput Industrial In-Line Boron BSF Diffusion” Jun. 2005. 20th European Photovoltaic Solar Energy Conference, pp. 777-780. |
National Weather Service Weather Forecast Office (“Why Do We have Seasons?” http://www.crh.noaa.gov/Imk/?n=seasons Accessed Oct. 18, 2014). |
O'Mara, W.C.; Herring, R.B.; Hunt L.P. (1990). Handbook of Semiconductor Silicon Technology. William Andrew Publishing/Noyes. pp. 275-293. |
Roedern, B. von, et al., ‘Why is the Open-Circuit Voltage of Crystalline Si Solar Cells so Critically Dependent on Emitter-and Base-Doping?’ Presented at the 9th Workshop on Crystalline Silicon Solar Cell Materials and Processes, Breckenridge, CO, Aug. 9-11, 1999. |
Stangl et al., Amorphous/Crystalline Silicon heterojunction solar cells—a simulation study; 17th European Photovoltaic Conference, Munich, Oct. 2001. |
Warabisako T et al: ‘Efficient Solar Cells From Metallurgical-Grade Silicon’ Japanese Journal of Applied Physics, Japan Society of Applied Physics, JP, vol. 19, No. Suppl. 19-01, Jan. 1, 1980 (Jan. 1, 1980), pp. 539-544, XP008036363 ISSN: 0021-4922. |
WP Leroy et al., “In Search for the Limits of Rotating Cylindrical Magnetron Sputtering”, Magnetron, ION Processing and ARC Technologies European Conference, Jun. 18, 2010, pp. 1-32. |
Yao Wen-Jie et al: ‘Interdisciplinary Physics and Related Areas of Science and Technology;The p recombination layer in tunnel junctions for micromorph tandem solar cells’, Chinese Physics B, Chinese Physics B, Bristol GB, vol. 20, No. 7, Jul. 26, 2011 (Jul. 26, 2011), p. 78402, XP020207379, ISSN: 1674-1056, DOI: 10.1088/1674-1056/20/7/078402. |
Hornbachner et al., “Cambered Photovoltaic Module and Method for its Manufacture” Jun. 17, 2009. |
Machine translation of JP 10004204 A, Shindou et al. |
Jianhua Zhao et al. “24% Efficient pert silicon solar cell: Recent improvements in high efficiency silicon cell research”. |
“Nonequilibrium boron doping effects in low-temperature epitaxial silicon” Meyerson et al., Appl. Phys. Lett. 50 (2), p. 113 (1987). |
“Doping Diffusion and Implantation” Parthavi, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/content/course03/pdf/0306.pdf>. |
Parthavi, “Doping by Diffusion and Implantation”, <http://www.leb.eei.uni-erlangen.de/winterakademie/2010/report/course03/pdf/0306.pdf. |
Weiss, “Development of different copper seed layers with respect to the copper electroplating process,” Microelectronic Engineering 50 (2000) 443-440, Mar. 15, 2000. |
Tomasi, “Back-contacted Silicon Heterojunction Solar Cells With Efficiency>21%” 2014 IEEE. |
Number | Date | Country | |
---|---|---|---|
20150236177 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61492752 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13480393 | May 2012 | US |
Child | 14703716 | US |