Tunneling transistors

Information

  • Patent Grant
  • 8648426
  • Patent Number
    8,648,426
  • Date Filed
    Friday, December 17, 2010
    13 years ago
  • Date Issued
    Tuesday, February 11, 2014
    10 years ago
Abstract
A transistor including a source; a drain; a gate region, the gate region including a gate; an island; and a gate oxide, wherein the gate oxide is positioned between the gate and the island; and the gate and island are coactively coupled to each other; and a source barrier and a drain barrier, wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region.
Description
BACKGROUND

Non-volatile memory technologies are constantly advancing and have reached a point where three dimensional (3D) arrays may be the best option for achieving the desired high density. A switching device with a large forward to backward current ratio could more easily enable the 3D stacking of memory cells. Most standard semiconductor switches don't provide the necessary ratio and may require high temperature processes that are incompatible with memory device fabrication. Therefore, there remains a need for new switching devices.


BRIEF SUMMARY

One particular embodiment of this disclosure is a transistor that includes a source; a drain; a gate region, the gate region including: a gate; an island; and a gate oxide, wherein the gate oxide is positioned between the gate and the island; and the gate and island are coactively coupled to each other; and a source barrier and a drain barrier, wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region.


Another particular embodiment of this disclosure is a memory array that includes a first memory array layer that includes a plurality of memory units, each memory unit having a transistor electrically coupled to a memory cell; and a second memory array layer that includes a plurality of memory units, each memory unit having a transistor electrically coupled to a memory cell, wherein the transistors include: a source; a drain; a gate region, the gate region including a gate; an island; and a gate oxide, wherein the gate oxide is positioned between the gate and the island; and the gate and island are coactively coupled to each other; and a source barrier and a drain barrier, wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region.


Yet another particular embodiment of this disclosure is a transistor that includes a source; a drain; a gate region, the gate region including a gate; an island; and a gate oxide, wherein the gate oxide is positioned between the gate and the island; and the gate and island are coactively coupled to each other; and a source barrier and a drain barrier, wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region, and wherein the source barrier and drain barrier are thinner proximate the island than they are proximate the gate.


These and various other features and advantages will be apparent from a reading of the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description of various embodiments of the disclosure in connection with the accompanying drawings, in which:



FIG. 1 is a schematic diagram of an exemplary embodiment of a disclosed transistor



FIGS. 2A and 2B are schematic diagrams of the electrical band alignment with no bias and not gate potential applied (FIG. 2A); with a bias and no gate potential applied (FIG. 2B); and a bias and no gate potential applied (FIG. 2C);



FIG. 3 is a schematic diagram of an exemplary embodiment of a disclosed transistor having a vertical configuration; and



FIG. 4 is an exploded perspective schematic diagram of an illustrative 3D memory array.





The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.


DETAILED DESCRIPTION

The present disclosure is directed to various embodiments of switching devices, or more specifically, transistors.


In the following description, reference is made to the accompanying set of drawings that form a part hereof and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense. Any definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


While the present disclosure is not so limited, an appreciation of various aspects of the disclosure will be gained through a discussion of the examples provided below.



FIG. 1A depicts an exemplary transistor 100 that includes a source 110, a drain 120, a gate region 130, a source barrier 115 and a drain barrier 125. Although not depicted herein, the transistor 100 can be formed on or within a substrate. Generally, the gate region 130 can be positioned between the source 110 and the drain 120. Disclosed transistors also include a source barrier 115 and a drain barrier 125. The source barrier 115 separates the source from the gate region 130 and the drain barrier 125 separates the drain from the gate region 130. The source barrier 115 and the drain barrier 125 can physically separate the source 110 and drain 120 respectively from the gate region 130, electrically separate the source 110 and drain 120 respectively from the gate region 130, or both physically and electrically separate the source 110 and drain 120 respectively from the gate region 130.



FIG. 1B depicts another exemplary transistor 100 that more specifically shows the gate region 130. The gate region 130 can more specifically include an island 140, a gate oxide 150 and a gate 160. Generally, the gate oxide 150 can be positioned between the island 140 and the gate 160. The gate oxide 150 can physically separate the island 140 and the gate 160, can electrically separate the island 140 and the gate 160, or can both physically and electrically separate the island 140 and the gate 160. In embodiments, the gate 160, the gate oxide 150, and island 140 can be stacked in a direction perpendicular (or orthogonal) to the relative location of the source 110 and drain 120 with respect to the gate region 130.


The gate 160 and the island 140 are coactively coupled to each other. In embodiments, the gate 160 is coactively coupled to the island 140 through the gate oxide 150. Two structures being “coactively coupled” generally means that the two structures are connected in their behavior. In embodiments, two structures (such as the gate 160 and the island 140) can be electrically coactively coupled, meaning that the electrical behavior of the two structures is connected. For example, applying a positive charge to one of the structures could elicit a negative charge in the other structure. In embodiments, application of a charge (either positive or negative) to the gate 160 can cause the opposite charge (either negative or positive) to build up in regions of the island 140 that are most proximate the gate 160. In embodiments, an applied bias on the gate can generate accumulation of the charge carriers (electrons or holes) in the region close to the gate oxide. The accumulation of the charge carriers depletes the charge carriers in the region of the island on the opposite end. Thus, the band structure of this depleted region can change, resulting in an increase of the energy barrier.


The source 110 and drain 120 can generally be made of either n- or p-type doped silicon (Si). The source 110 and drain 120 are generally either both n- or both p-type doped silicon. The gate 160 can generally be made of metals, metal oxides or poly-silicon. Exemplary metals that can be used for the gate 160 can include those having an appropriate band gap, such as tantalum, tungsten, tantalum nitride, and titanium nitride. Exemplary metal oxides that can be used for the gate 160 can include ruthenium oxide, SrRuO3, CaRuO3, and (Sr,Ca)RuO3. In embodiments where poly-silicon is used for the gate 160, the poly-silicon can be highly doped poly-silicon. The gate oxide 150 can generally be made of silicon dioxide (SiO2), or materials having a high dielectric constant (k) (compared to SiO2). Exemplary high k materials can include zirconium dioxide (ZrO2), yttrium oxide (Y2O3), hafnium dioxide (HfO2), and silicon oxynitrides (SiOxNy). Solid solutions of high k materials (such as those listed above) can also be utilized for the gate oxide. The source barrier 115 and the drain barrier 125 can generally be made of SiO2, or materials having a high dielectric constant (k) (compared to SiO2). Exemplary high k materials can include ZrO2, Y2O3, HfO2, and SiOxNy. Solid solutions of high k materials (such as those listed above) can also be utilized for the source barrier 115 and drain barrier 125. The island 140 can generally be made of appropriately doped silicon with a particular level of carrier concentration, in embodiments, the silicon can be doped to a degenerate level. The island 140 can generally be made of an n- or p-type doped Si or a semiconductor oxide. Exemplary semiconductor oxides can include tin oxide (SnO), non-stoichiometric tin oxide (Sn2O3), and indium oxide (In2O3). Solid solutions of semiconductor oxides (such as those listed above) can also be utilized for the island 140.


In embodiments, the gate 160 can be made of degenerate poly-silicon. In embodiments, the gate oxide 150 can be made of SiO2. In embodiments, the source barrier 115 and the drain barrier 125 can be made of SiO2. In embodiments, the island 140 can be made of doped Si. In embodiments, the gate 160 can be made of degenerate poly-silicon; the gate oxide 150 can be made of SiO2; the source barrier 115 and the drain barrier 125 can be made of SiO2; and the island 140 can be made of doped Si.


Transistors disclosed herein utilize the metal-oxide-semiconductor field effect (MOSFET). FIG. 2A shows an energy band diagram of an exemplary transistor when the bias is 0V and the gate potential is 0V. Without any potential (or a potential below the threshold voltage) applied to the gate, there is little or no conduction between the source and drain in either direction because the electrical barrier is high (as indicated by the height of the potential energy), even though the energy barrier of the island (the region in the middle) is low. FIG. 2B shows an energy band diagram of the exemplary transistor when the bias is greater than 0 V, and the gate potential is 0 V (or below the threshold voltage). As seen here, the electrical barrier of the drain barrier still contributes to stopping the tunneling current, even though from the drain to the source, it is electrically down hill.



FIG. 2C shows an energy band diagram of the exemplary transistor when the bias voltage is 0 V, and the gate potential is at or above the threshold voltage. Application of a positive gate potential will, because of the coactively coupled gate and island, cause the electrons in the island to be drawn towards the gate oxide. This will in turn decrease the barrier to electrons tunneling from the source to the drain. This is shown in FIG. 2C by the increased energy level for the island. The large difference in barrier physical thickness when the gate potential is above and below the threshold voltage creates a large ratio between the forward and backward current.


In embodiments the source barrier and drain barrier can have variable thicknesses. In embodiments, the source barrier and drain barrier can be thinner proximate the island than they are proximate the gate. As seen in FIG. 1B, the source barrier 115 (for example) is thinner where it separates the source 110 from the island 140 than it is where it separates the source 110 from the gate 160. In embodiments, the source barrier 115 and the drain barrier 125 can have a thickness that can be a factor of two (2) times thinner proximate the island 140 than it is proximate the gate 160. Such a variable thickness can be created through ion milling, for example, of a precursor material making up the source barrier and drain barrier. Having the source barrier and drain barrier thinner proximate the island than the gate can create a thinner channel where the tunneling current exists. This can prevent significant leakage current through the region that is close to the gate oxide.



FIG. 3 depicts another exemplary embodiment of a disclosed transistor. This exemplary transistor 300 can generally include the same components as discussed above: a source 310, a drain 320, a gate region 330 that includes a gate 360 and an island 340 that are separated by a gate oxide 350, a source barrier 315 and a drain barrier 325. The materials and characteristics of the components can generally be the same as those discussed above. The source 310, source barrier 315, island 340, drain barrier 325 and drain 320 can be characterized as being stacked. In an embodiment, these components can be stacked in a vertical configuration on a substrate. The gate region 330 can be stacked on a portion of the previously noted stacked components so that the source barrier 315 and drain barrier 325 separate the source 310 and drain 320 respectively from the gate region 330. In an exemplary embodiment, at least the island 340 of the gate region 330 contacts the source barrier 315 and the drain barrier 325. In another exemplary embodiment, only the island 340 of the gate region 330 need contact the source barrier 315 and the drain barrier 325, and the gate oxide 350 and gate 360 can be displaced from the rest of the stack. In such an embodiment, the gate 360 can contact the gate oxide 350, but not the source barrier 315 or the drain barrier 325. In embodiments, the gate 360 can contact the gate oxide 350, but not any other components of the transistor 300 (except a substrate if present).


Such an exemplary transistor can yield a larger junction surface (than the embodiment depicted in FIGS. 1A and 1B) and current, which can lead to a large forward current density. In embodiments, such as that depicted in FIG. 3, the source barrier can, but need not be thicker than the drain barrier. Having the source barrier and the drain barrier with different thicknesses can serve to compensate for different junction areas that may be present (compare the area of drain barrier 325 to source barrier 315 in the exemplary embodiment depicted in FIG. 3).



FIG. 4 is an exploded perspective schematic diagram of an illustrative 3D memory array 200. The 3D memory array 200 can include a plurality of memory array layers 210, 211, 212, and 213 stacked sequentially to form the memory array 200. The 3D memory array 200 can also optionally include a base circuitry layer 202. Each memory array layer layers 210, 211, 212, and 213 can be electrically coupled to the base circuitry layer 202. Each memory array layer 210, 211, 212, and 213 can include a plurality of memory units 220 including a transistor 222, as discussed above, that is electrically coupled to a memory cell 224. Each memory unit 220 can be located at the intersection of row and column lines forming cross point architecture.


The memory cells 224 can be spin torque transfer random access memory (STRAM) or resistive random access memory (RRAM) cells. The plurality of memory array layers 210, 211, 212, and 213 can be stacked in a co-planar arrangement where each of the layers are electrically isolated form each other. Each of the plurality of memory array layers 210, 211, 212, and 213 are electrically coupled to the base circuitry layer 202 and can be operated by the base circuitry layer 202.


Thus, embodiments of TUNNELLING TRANSISTORS are disclosed. The implementations described above and other implementations are within the scope of the following claims. One skilled in the art will appreciate that the present disclosure can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present disclosure is limited only by the claims that follow.

Claims
  • 1. A transistor comprising: a source;a drain;a gate region, the gate region comprising: a gate;an island; anda gate oxide,wherein the gate oxide is positioned between the gate and the island; and the gate and island are electrically coactively coupled to each other; anda source barrier and a drain barrier,wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region, and wherein the source barrier and drain barrier are thinner proximate the island than they are proximate the gate.
  • 2. The transistor according to claim 1, wherein the source barrier and drain barrier have a variable thickness.
  • 3. The transistor according to claim 1, wherein the source and drain comprise n- or p-type doped silicon.
  • 4. The transistor according to claim 1, wherein the gate comprises a metal, a metal oxide or poly-silicon.
  • 5. The transistor according to claim 1, wherein the gate oxide comprises SiO2, or a material having a high dielectric constant.
  • 6. The transistor according to claim 5, wherein the gate oxide comprises ZrO2, Y2O3, HfO2, SiOxNy, or solid solutions thereof.
  • 7. The transistor according to claim 1, wherein the source barrier and drain barrier independently comprise SiO2, or a material having a high dielectric constant.
  • 8. The transistor according to claim 7, wherein the source barrier and drain barrier independently comprise ZrO2, Y2O3, HfO2, SiOxNy, or solid solutions thereof.
  • 9. The transistor according to claim 1, wherein the island comprises n- or p-type doped silicon or a semiconductor oxide.
  • 10. The transistor according to claim 9, wherein the island comprises SnO, Sn2O3, 1n2O3, or solid solutions thereof
  • 11. The transistor according to claim 1, wherein the source, source barrier, island, drain barrier, and drain are stacked on a substrate.
  • 12. The transistor according to claim 11, wherein the source barrier is thicker than the drain barrier.
  • 13. The transistor according to claim 11, wherein at least the island of the gate region contacts both the source barrier and the drain barrier.
  • 14. The transistor according to claim 13, wherein the gate contacts only the gate oxide.
  • 15. A memory array comprising: a first memory array layer that comprises a plurality of memory units, each memory unit comprising a transistor electrically coupled to a memory cell; anda second memory array layer that comprises a plurality of memory units, each memory unit comprising a transistor electrically coupled to a memory cell,wherein the transistors comprise: a source;a drain;a gate region, the gate region comprising: a gate;an island; anda gate oxide, wherein the gate oxide is positioned between the gate and the island; and the gate and island are electrically coactively coupled to each other; anda source barrier and a drain barrier,wherein the source barrier separates the source from the gate region and the drain barrier separates the drain from the gate region; andwherein the source barrier and drain barrier are thinner proximate the island than they are proximate the gate.
  • 16. The memory array according to claim 15, wherein the first memory array layer and the second memory array layer includes a plurality of rows and columns of memory units.
  • 17. The memory array according to claim 15 further comprising three or more memory array layers stacked sequentially to form the memory array.
US Referenced Citations (183)
Number Name Date Kind
3982233 Crookshanks Sep 1976 A
3982235 Bennett Sep 1976 A
3982266 Matzen Sep 1976 A
4056642 Saxena Nov 1977 A
4110488 Risko Aug 1978 A
4160988 Russell Jul 1979 A
4232057 Ray Nov 1980 A
4247915 Bartlett Jan 1981 A
4323589 Ray Apr 1982 A
4576829 Kaganowicz Mar 1986 A
4901132 Kawano Feb 1990 A
5135878 Bartur Aug 1992 A
5278636 Williams Jan 1994 A
5330935 Dobuzinsky Jul 1994 A
5412246 Dobuzinsky May 1995 A
5443863 Neely Aug 1995 A
5580804 Joh Dec 1996 A
5614430 Liang Mar 1997 A
5739564 Kosa Apr 1998 A
5872052 Iyer Feb 1999 A
5913149 Thakur Jun 1999 A
5923948 Cathey, Jr. Jul 1999 A
5929477 McAllister Jul 1999 A
6011281 Nunokawa Jan 2000 A
6013548 Burns Jan 2000 A
6034389 Burns Mar 2000 A
6077745 Burns Jun 2000 A
6100166 Sakaguchi Aug 2000 A
6114211 Fulford Sep 2000 A
6121642 Newns Sep 2000 A
6121654 Likharev Sep 2000 A
6165834 Agarwal Dec 2000 A
6300205 Fulford Oct 2001 B1
6341085 Yamagami Jan 2002 B1
6346477 Koloyeros Feb 2002 B1
6376332 Yankagita Apr 2002 B1
6448840 Kao Sep 2002 B2
6462931 Tang et al. Oct 2002 B1
6534382 Sakaguchi Mar 2003 B1
6617642 Georgesca Sep 2003 B1
6624463 Kim Sep 2003 B2
6653704 Gurney Nov 2003 B1
6667900 Lowrey Dec 2003 B2
6724025 Takashima Apr 2004 B1
6750540 Kim Jun 2004 B2
6753561 Rinerson Jun 2004 B1
6757842 Harari Jun 2004 B2
6781176 Ramesh Aug 2004 B2
6789689 Beale Sep 2004 B1
6800897 Baliga Oct 2004 B2
6842368 Hayakawa Jan 2005 B2
6853031 Liao Feb 2005 B2
6917539 Rinerson Jul 2005 B2
6940742 Yamamura Sep 2005 B2
6944052 Subramanian Sep 2005 B2
6979863 Ryu Dec 2005 B2
7009877 Huai Mar 2006 B1
7045840 Tamai May 2006 B2
7051941 Yui May 2006 B2
7052941 Lee May 2006 B2
7098494 Pakala Aug 2006 B2
7130209 Reggiori Oct 2006 B2
7161861 Gogl Jan 2007 B2
7180140 Brisbin Feb 2007 B1
7187577 Wang Mar 2007 B1
7190616 Forbes Mar 2007 B2
7200036 Bessho Apr 2007 B2
7215568 Liaw May 2007 B2
7218550 Schwabe May 2007 B2
7224601 Panchula May 2007 B2
7233537 Tanizaki Jun 2007 B2
7236394 Chen Jun 2007 B2
7247570 Thomas Jul 2007 B2
7272034 Chen Sep 2007 B1
7272035 Chen Sep 2007 B1
7273638 Belyansky Sep 2007 B2
7274067 Forbes Sep 2007 B2
7282755 Pakala Oct 2007 B2
7285812 Tang Oct 2007 B2
7286395 Chen Oct 2007 B2
7289356 Diao Oct 2007 B2
7345912 Luo Mar 2008 B2
7362618 Harari Apr 2008 B2
7378702 Lee May 2008 B2
7379327 Chen May 2008 B2
7381595 Joshi Jun 2008 B2
7382024 Ito Jun 2008 B2
7391068 Kito Jun 2008 B2
7397713 Harari Jul 2008 B2
7413480 Thomas Aug 2008 B2
7414908 Miyatake Aug 2008 B2
7416929 Mazzola Aug 2008 B2
7432574 Nakamura Oct 2008 B2
7440317 Bhattacharyya Oct 2008 B2
7456069 Johansson Nov 2008 B2
7465983 Eldridge Dec 2008 B2
7470142 Lee Dec 2008 B2
7470598 Lee Dec 2008 B2
7502249 Ding Mar 2009 B1
7515457 Chen Apr 2009 B2
7542356 Lee Jun 2009 B2
7646629 Hamberg Jan 2010 B2
7692610 Kimura Apr 2010 B2
7697322 Leuschner Apr 2010 B2
7738279 Siesazeck Jun 2010 B2
7738881 Krumm Jun 2010 B2
7829875 Scheuerlein Nov 2010 B2
20010046154 Forbes Nov 2001 A1
20020081822 Yanageta Jun 2002 A1
20020136047 Scheuerlein Sep 2002 A1
20030045064 Kunikiyo Mar 2003 A1
20030049900 Forbes Mar 2003 A1
20030102514 Sato Jun 2003 A1
20030168684 Pan Sep 2003 A1
20040084725 Nishiwaki May 2004 A1
20040114413 Parkinson Jun 2004 A1
20040114438 Morimoto Jun 2004 A1
20040257878 Morikawa Dec 2004 A1
20040262635 Lee Dec 2004 A1
20050044703 Liu Mar 2005 A1
20050092526 Fielder May 2005 A1
20050122768 Fukumoto Jun 2005 A1
20050145947 Russ Jul 2005 A1
20050169043 Yokoyama Aug 2005 A1
20050218521 Lee Oct 2005 A1
20050253143 Takaura Nov 2005 A1
20050280042 Lee Dec 2005 A1
20050280061 Lee Dec 2005 A1
20050280154 Lee Dec 2005 A1
20050280155 Lee Dec 2005 A1
20050280156 Lee Dec 2005 A1
20050282356 Lee Dec 2005 A1
20060073652 Pellizzer Apr 2006 A1
20060076548 Park Apr 2006 A1
20060091490 Chen et al. May 2006 A1
20060105517 Johansson May 2006 A1
20060131554 Joung Jun 2006 A1
20060275962 Lee Dec 2006 A1
20070007536 Hidaka Jan 2007 A1
20070077694 Lee Apr 2007 A1
20070105241 Leuschner May 2007 A1
20070113884 Kensey May 2007 A1
20070115749 Gilbert May 2007 A1
20070253245 Ranjan Nov 2007 A1
20070279968 Luo Dec 2007 A1
20070281439 Bedell Dec 2007 A1
20070297223 Chen Dec 2007 A1
20080007993 Saitoh Jan 2008 A1
20080025083 Okhonin Jan 2008 A1
20080029782 Carpenter Feb 2008 A1
20080032463 Lee Feb 2008 A1
20080037314 Ueda Feb 2008 A1
20080038902 Lee Feb 2008 A1
20080048327 Lee Feb 2008 A1
20080064153 Qiang Lo et al. Mar 2008 A1
20080094873 Lai Apr 2008 A1
20080108212 Moss May 2008 A1
20080144355 Boeve Jun 2008 A1
20080170432 Asao Jul 2008 A1
20080191312 Oh Aug 2008 A1
20080261380 Lee Oct 2008 A1
20080265360 Lee Oct 2008 A1
20080273380 Diao Nov 2008 A1
20080310213 Chen Dec 2008 A1
20080310219 Chen Dec 2008 A1
20090014719 Shimizu Jan 2009 A1
20090040855 Luo Feb 2009 A1
20090052225 Morimoto Feb 2009 A1
20090072246 Genrikh Mar 2009 A1
20090072279 Moselund Mar 2009 A1
20090146185 Suh et al. Jun 2009 A1
20090161408 Tanigami Jun 2009 A1
20090162979 Yang Jun 2009 A1
20090185410 Huai Jul 2009 A1
20090296449 Slesazeck Dec 2009 A1
20100007344 Guo Jan 2010 A1
20100066435 Siprak Mar 2010 A1
20100067281 Xi Mar 2010 A1
20100078758 Sekar Apr 2010 A1
20100110756 Khoury May 2010 A1
20100142256 Kumar Jun 2010 A1
20100149856 Tang Jun 2010 A1
20110079844 Hsieh Apr 2011 A1
Foreign Referenced Citations (8)
Number Date Country
102008026432 Dec 2009 DE
1329895 Jul 2003 EP
WO 0062346 Oct 2000 WO
WO 0215277 Feb 2002 WO
WO 2005124787 Dec 2005 WO
WO 2006100657 Sep 2006 WO
WO 2007100626 Sep 2007 WO
WO 2007128738 Nov 2007 WO
Non-Patent Literature Citations (19)
Entry
Adee, S., “Quantum Tunneling Creates Fast Lane for Wireless”, IEEE Spectrum, Oct. 2007.
Berger et al., Merged-Transitor Logic (MTL)—A Low-Cost Bipolar Logic Concept, Solid-State Circuits, IEEE Journal, vol. 7, Issue 5, pp. 340-346 (2003).
Chung et al., A New SOI Inverter for Low Power Applications, Proceedings 1996 IEEE International SOI Conference, Oct. 1996.
Hosomi et al., A Novel Nonvolatile Memory with Spin Torque Transfer Magnetization Switching: Spin-RAM, 2005 IEEE.
Hwang et al., Degradation of MOSFET's Drive Current Due to Halo Ion Implantation, Electron Devices Meeting, 1996, International Date: Dec. 8-11, 1996, pp. 567-570.
Internet website www.en.wikipedia.org/wiki/High-k dated Nov. 12, 2008.
Likharev, K., “Layered tunnel barrier for nonvolatile memory devices”, Applied Physics Letters vol. 73, No. 15; Oct. 12, 1998.
Londergran et al., Interlayer Mediated Epitaxy of Cobalt Silicide on Silicon (100) from Low Temperature Chemical Vapor Deposition of Cobalt, Journal of the Electrochemical Society, 148 (1) C21-C27 (2001) C21.
Sayan, S., “Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study”, Phys. Stat. Sol. (b) 241, No. 10, pp. 2246-2252 (2004).
Takato et al., High Performance CMOS Surrounding Gate Transistor (SGT) for Ultra High Density LSIs, Downloaded on Apr. 14, 2009 from IEEE Xplore, pp. 222-225.
U.S. Appl. No. 12/175,545, filed Jul. 18, 2008, Inventors: Lou et al.
U.S. Appl. No. 12/120,715, filed May 15, 2008, Inventors: Tian et al.
U.S. Appl. No. 12/498,661, filed Jul. 7, 2009, Inventor: Khoury.
U.S. Appl. No. 12/502,211, filed Jul. 13, 2009, Inventor: Lu.
Wang et al., Precision Control of Halo Implanation for Scaling-down ULSI Manufacturing, IEEE International Symposium on Sep. 13-15, 2005, pp. 204-207.
Giacomini, R., et al., Modeling Silicon on Insulator MOS Transistors with Nonrectangular-Gate Layouts, Journal of the Electrochemical Society, 2006, pp. G218-G222, vol. 153, No. 3.
PCT/ISA/210 Int'l. Search Report and PCT/ISA/237 Written Opinion for PCT/US2010/041134 from the EPO.
Romanyuk, A., et al., Temperature-induced metal-semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy, Solar Energy Materials and Solar Cells, 2007, pp. 1831-1835, No. 91, Elsevier, Switzerland.
Zahler, James, et al., Wafer Bonding and Layer Transfer Processes for High Efficiency Solar Cells, NCPV and Solar Program Review Meeting, pp. 723-726, 2003.
Related Publications (1)
Number Date Country
20120153400 A1 Jun 2012 US