This invention relates generally to turbine engines, and more particularly to an air flow conditioning system to improve air distribution within an air chamber.
Fuel-air mixing affects engine performance and emissions in a variety of engines, such as turbine engines. For example, a gas turbine engine may employ one or more fuel nozzles to intake air and fuel to facilitate fuel-air mixing in a combustor. The nozzles may be located in a head end portion of a turbine, and may be configured to intake an air flow to be mixed with a fuel input. Unfortunately, the air flow may not be distributed evenly among a plurality of nozzles, leading to an inconsistent mixture of fuel and air. Further, in a single nozzle embodiment, the air flow may be uneven within the nozzle due to the geometry within the head end of the turbine combustor. As such, uneven or non-uniform flow within the fuel nozzle may lead to inadequate mixing with fuel, thereby reducing performance and efficiency of the turbine engine. As a result, the air flow into the head end may cause increased emissions and reduce performance due to uneven flow of air into each nozzle and among a plurality of nozzles.
One aspect of the disclosed technology relates to system for a gas turbine comprising a turbine combustor section, including: a plurality of fuel nozzles to distribute an air-fuel mixture in the combustor section; an annular passage to convey pressurized air; an air chamber arranged to deliver the pressurized air to the plurality of nozzle; and a flow conditioner including a plurality of conduits arranged to convey the pressurized air, each conduit including an inlet configured to receive the pressurized air from the annular passage and an outlet configured to deliver the pressurized air to the air chamber for entrance into the plurality of fuel nozzles, wherein each conduit has a tubular configuration adapted to extend between the annular passage and the air chamber, and wherein each conduit has a first portion having a first cross-sectional area and a second portion having a second cross-sectional area, the first cross-sectional area being smaller than the second cross-sectional area so as to reduce the size of a recirculation zone of the pressurized air in the air chamber.
Another aspect of the disclosed technology relates to a system for a gas turbine, comprising a turbine combustor section including: a plurality of fuel nozzles to distribute an air-fuel mixture in the combustor section; an annular passage to convey pressurized air; an air chamber arranged to deliver the pressurized air to the plurality of nozzle; and a flow conditioner including a plurality of conduits arranged to convey the pressurized air, each conduit including an inlet configured to receive the pressurized air from the annular passage and an outlet configured to deliver the pressurized air to the air chamber for entrance into the plurality of fuel nozzles, wherein a cross-sectional area of each conduit varies between the inlet and the outlet so as to reduce a pressure drop across the flow conditioner.
Other aspects, features, and advantages of this technology will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of this invention.
The accompanying drawings facilitate an understanding of the various examples of this technology. In such drawings:
As discussed in detail below, various embodiments of air flow conditioners and related structures may be employed to improve the performance and reduce emissions of a turbine engine. For example, the disclosed air flow conditioners may be disposed in a head end region of a gas turbine combustor, such that the air flow conditioner improves the distribution and uniformity of air flow to one or more fuel nozzles. Accordingly, the improved and balanced flow of air to the one or more fuel nozzles will lead to more predictable mixtures of air and fuel within the combustor, thereby improving performance.
Turning now to the drawings and referring first to
The combustor 16 directs the exhaust gases through a turbine 18 toward an exhaust outlet 20. As the exhaust gases pass through the turbine 18, the gases force one or more turbine blades to rotate a shaft 22 along an axis of the system 10. As illustrated, the shaft 22 may be connected to various components of the turbine system 10, including a compressor 24. The compressor 24 also includes blades that may be coupled to the shaft 22. As the shaft 22 rotates, the blades within the compressor 24 also rotate, thereby compressing air from an air intake 26 through the compressor 24 and into the fuel nozzles 12 and/or combustor 16. The shaft 22 may also be connected to a load 28, which may be a vehicle or a stationary load, such as an electrical generator in a power plant or a propeller on an aircraft, for example. As will be understood, the load 28 may include any suitable device capable of being powered by the rotational output of turbine system 10.
As discussed in detail below, an embodiment of the turbine system 10 includes certain structures and components within a head end of the combustor 16 to improve flow of air into the fuel nozzles 12, thereby improving performance and reducing emissions. For example, an air flow conditioner 50, including a stepped hole (e.g., stepped conveyance path/passageway, e.g., in a conduit), may be placed in the air flow path into an air chamber, wherein the stepped hole reduces the total size of downstream recirculation zones to improve distribution of air into the fuel nozzles 12, thereby improving the fuel-air mixture ratio and enhancing accuracy of the ratio. By reducing the total size of the recirculation zones downstream of an inlet of the flow conditioner, the pressure drop across the flow conditioner is also reduced.
In general, however, the compressed air 38 which flows into the head end region 34 may flow into the fuel nozzles 12 through a nozzle inlet flow conditioner having inlet perforations 48, which may be disposed in outer cylindrical walls of the fuel nozzles 12. As discussed in greater detail below, an air flow conditioner 50 may break up large scale flow structures (e.g., a single annular jet) of the compressed air 38 into smaller scale flow structures as the compressed air 38 is routed into the head end region 34. In addition, the air flow conditioner 50 guides or channels the air flow in a manner providing more uniform air flow distribution among the different fuel nozzles 12, which also improves the uniformity of air flow into each individual fuel nozzle 12. Accordingly, the compressed air 38 may be more evenly distributed to balance air intake among the fuel nozzles 12 within the head end region 34. The compressed air 38 that enters the fuel nozzles 12 via the inlet perforations 48 mixes with fuel and flows through an interior volume 52 of the combustor liner 44, as illustrated by arrow 54. The air and fuel mixture flows into a combustion cavity 56, which may function as a combustion burning zone. The heated combustion gases from the combustion cavity 56 flow into a turbine nozzle 58, as illustrated by arrow 60, where they are delivered to the turbine 18.
As illustrated in
Returning now to
Referring to
Referring to
Since the relatively smaller diameter portion 122 has a smaller diameter as compared to the relatively larger diameter portion 124, it also has a smaller cross-sectional area as compared to the relatively larger diameter portion. The multi-diameter nature of the conduit reduces the amount of pressure drop that would occur if the conduit had a constant diameter.
In the example of
Referring to
The convergent portion 132 has a conical shape that converges in a flow direction of the compressed air 38. The divergent portion 136 has a conical shape that expands in the flow direction of the compressed air. As mentioned above, those skilled in the art will understand that the cross-sectional area of each respective portion of the conduit corresponds directly to the diameter (or size generally) of the conduit. The multi-diameter configuration of the conduit 130 reduces the total size of any recirculation zones downstream of the inlet opening 51 and therefore reduces the pressure drop across the flow conditioner 50-1, as compared to a constant diameter conduit (e.g., flow conditioner 300).
In the example of
Referring to
The conical expansion portion 144 has a conical shape that expands in the flow direction of the compressed air. The multi-diameter configuration of the conduit 140 reduces the total size of any recirculation zones downstream of the inlet opening 51 and therefore reduces the pressure drop across the flow conditioner 50-2, as compared to a constant diameter conduit (e.g., flow conditioner 300).
In the example of
It is noted that the conduits described above may have shapes other than circular or tubular, such as elliptical or square, for example.
While the invention has been described in connection with what is presently considered to be the most practical and preferred examples, it is to be understood that the invention is not to be limited to the disclosed examples, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5341848 | Laws | Aug 1994 | A |
5495872 | Gallagher et al. | Mar 1996 | A |
5762107 | Laws | Jun 1998 | A |
6438961 | Tuthill | Aug 2002 | B2 |
7762074 | Bland et al. | Jul 2010 | B2 |
8234872 | Berry | Aug 2012 | B2 |
20070227148 | Bland | Oct 2007 | A1 |
20100064693 | Koenig | Mar 2010 | A1 |
20120111013 | Parsania | May 2012 | A1 |
20130061598 | Widener | Mar 2013 | A1 |
20130125548 | Dutta et al. | May 2013 | A1 |
20140116058 | Chen | May 2014 | A1 |
20140190174 | Melton | Jul 2014 | A1 |
20160178202 | Antoniono | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20150369488 A1 | Dec 2015 | US |