None.
None.
1. Field of the Invention
The present invention relates to airfoils used in a gas turbine airfoil, and more specifically to an airfoil having a platform.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
In a gas turbine engine, a turbine section includes a plurality of turbine blades and guide nozzles or vanes on which a hot gas stream reacts to drive the turbine. This hot gas stream passes through and around the turbine blades. A hot gas migration phenomenon on the airfoil pressure side is created by a combination of hot flow core axial velocity and static pressure gradient exerting on the surfaces of the airfoil pressure wall and the suction wall of adjacent airfoils. As a result of this hot gas flow phenomena, some of the hot core gas flow from an upper airfoil span is transferred toward a close proximity of the platform and therefore creates a high heat transfer coefficient and high gas temperature region at approximately two-thirds of the blade chord location.
A Prior Art blade with platform is shown in
U.S. Pat. No. 6,341,939 B1 issued to Lee on Jan. 29, 2002 entitled TANDEM COOLING TURBINE BLADE discloses a turbine blade with a central cooling air passage and a metering hole leading from the central passage and onto the outer surface of the platform around the transition region of the blade for cooling the transition region (space between the airfoil and the platform). However, the Lee invention does not uncouple the airfoil from the platform as does the present invention, among other differences.
U.S. Pat. No. 5,340,278 issued to Magowan on Aug. 23, 1994 entitled ROTOR BLADE WITH INTEGRAL PLATFORM AND A FILLET COOLING PASSAGE discloses a turbine blade with a cooling fluid passage connecting the core passage of the blade with the damper or dead rim cavity for the purpose of cooling the fillet of the platform and airfoil transition. No cooling air passes onto the outer surface of the airfoil platform or airfoil, and the platform is not uncoupled from the airfoil as in the present invention, among other differences.
U.S. Pat. No. 5,382,135 issued to Green on Jan. 17, 1995 entitled ROTOR BLADE WITH COOLED INTEGRAL PLATFORM shows a turbine blade with a platform having a plurality of cooling holes located on the pressure side of the blade for cooling the platform. A row of cooling holes closest to the airfoil surface are supplied with cooling air from the core or central passage of the blade, while an outer row of cooling holes are supplied with cooling air from the dead rim cavity below the platform. The Green invention does not provide for the uncoupling of the platform from the airfoil as in the present invention, among other differences.
One alternate way of cooling the fillet region is by the injection of film cooling air at discrete locations along the airfoil peripheral into the downward hot gas flow to create a film cooling layer for the fillet region 16. However, in order to achieve a high film effectiveness level, the discrete holes used in this type of film cooling injection have to be in a close pack formation. Otherwise, the spacing between the discrete film cooling holes and areas immediately downstream of the spacing are exposed to less cooling or no film cooling air at all. Consequently, these areas are more susceptible to thermal degradation and over temperature. On the other hand, the close pack cooling holes at the blade lower span becomes undesirable and the stress rupture capability of the blade is lower.
An object of the present invention is to reduce or eliminate the high heat transfer coefficient and high gas temperature region as well as high thermal gradient problem associated with a turbine blade platform.
Another object of the present invention is to uncouple the platform from the airfoil of the blade in order to reduce stress from thermal gradients between the two parts of the blade.
An airfoil used in a gas turbine engine includes a root, a platform, and an airfoil extending from the root and platform. A continuous thin slot or a plurality of discrete thin slots is disposed around the airfoil periphery at the airfoil and platform intersection. This thin film cooling slot is constructed with the airfoil fillet extended below the boundary wall and submerged within the slot. The thin film cooling slot is wrapped around the airfoil pressure side and suction side, and then is merged together at the airfoil trailing edge forming a closed loop film slot.
Cooling air from a dead rim cavity is injected within the thin film slot at the aft ward end throughout the internal surface of the thin film slot to provide a film layer and cool the airfoil and platform junction. Since the film cooling slot is formed below the blade platform and at an increased volume to diffuse the cooling air, a better built-up of the film layer for the injected cooling air is formed. In addition, some of the diffused cooling air from both pressure and suction side slots are then joined together at the airfoil trailing edge location to provide additional film cooling for the airfoil trailing edge root section as well as the downstream high heat load wake region.
A gas turbine engine has one or more stages of turbine blades arranged around a rotor disk. A turbine rotor disk includes a plurality of blades circumferentially arranged around the disk in which adjacent blades form a flow path for the hot gas stream passing through the turbine. Each turbine blade is represented in
To provide cooling of the blade platform 14, cooling air from the dead rim cavity passes through the plurality of metering holes 22, into the thin slots 20, and out the opening of the thin slots 20 and onto the airfoil and platform 14 for cooling purposes. The thin slot or slots 20 spaced around the platform de-couple the platform the from airfoil portion of the blade.
The thin slot and metering hole arrangement provides for several advantages over the Prior Art arrangement. Among these are: the thin metering film slot cooling arrangement provides for improved cooling along the airfoil root region and improved film formation relative to the Prior Art discrete film cooling hole injection technique; the metering cooling holes within the thin slot provide additional impingement convective cooling for the airfoil; the thin metering film cooling slots create additional local volume for the expansion of the cooling air, slows down the cooling velocity and pressure gradients (the cooling air will diffuse within the thin film cooling slot and thus build up a good film cooling layer for the airfoil platform hot spot region cooling); the thin metering film cooling slot increases the uniformity of the film cooling and insulates the airfoil from platform as well as the passing hot core gas, and thus establishes a durable film cooling for the platform region; the thin metering film cooling slot minimizes cooling loses or degradation of the film and therefore provides a more effective film cooling for film development and maintenance; the thin metering film cooling slot extends the cooling air continuously along the interface of the airfoil versus platform location, and therefore minimizes thermally induced stress by eliminating the discrete cooling hole which is separated by the non-cooled area characteristic of the Prior Art cooling scheme; the thin metering diffusion film cooling slots reduce the airfoil versus platform stiffness (especially for the airfoil trailing edge root section, the thin metering film cooling slot reduces the stiffness in the root local region and also provides local film cooling around the trailing edge root location and therefore greatly reduces the local metal temperature and improves the airfoil TMF or thermal mechanical fatigue capability); and, the thin lettering diffusion slot de-couples the platform from the blade airfoil which functions as a strain isolator for the airfoil platform, minimizing the thermal mismatch between the blade airfoil and the platform and therefore reducing the thermal gradient and improves the platform TMF or thermal mechanical fatigue life.
Number | Name | Date | Kind |
---|---|---|---|
3656863 | De Feo | Apr 1972 | A |
3950113 | Albrecht | Apr 1976 | A |
4293275 | Kobayashi et al. | Oct 1981 | A |
4396349 | Hueber | Aug 1983 | A |
4480956 | Kruger et al. | Nov 1984 | A |
4501053 | Craig et al. | Feb 1985 | A |
4863348 | Weinhold | Sep 1989 | A |
5145315 | North et al. | Sep 1992 | A |
5340278 | Magowan | Aug 1994 | A |
5358379 | Pepperman et al. | Oct 1994 | A |
5382135 | Geen | Jan 1995 | A |
6017189 | Judet et al. | Jan 2000 | A |
6341939 | Lee | Jan 2002 | B1 |
6416284 | Demers et al. | Jul 2002 | B1 |
6478540 | Abuaf et al. | Nov 2002 | B2 |
6758651 | Tomita et al. | Jul 2004 | B2 |
6830427 | Lafarge et al. | Dec 2004 | B2 |
6830432 | Scott et al. | Dec 2004 | B1 |
7004720 | Synnott et al. | Feb 2006 | B2 |
7021896 | Dodd | Apr 2006 | B2 |
7080971 | Wilson et al. | Jul 2006 | B2 |