The present invention is directed generally to turbine airfoils, and more particularly to turbine airfoils having internal cooling channels for conducting a coolant through the airfoil.
In a turbomachine, such as a gas turbine engme, air is pressurized in a compressor section and then mixed with fuel and burned in a combustor section to generate hot combustion gases. The hot combustion gases are expanded within a turbine section of the engine where energy is extracted to power the compressor section and to produce useful work, such as turning a generator to produce electricity. The hot combustion gases travel through a series of turbine stages within the turbine section. A turbine stage may include a row of stationary airfoils, i.e., vanes, followed by a row of rotating airfoils, i.e., turbine blades, where the turbine blades extract energy from the hot combustion gases for providing output power. Since the airfoils, i.e., vanes and turbine blades, are directly exposed to the hot combustion gases, they are typically provided with internal cooling channels that conduct a cooling fluid, such as compressor bleed air, through the airfoil.
One type of turbine airfoil includes a radially extending outer wall made up of opposite pressure and suction sidewalls extending from a leading edge to a trailing edge of the airfoil. The cooling channel extends inside the airfoil between the pressure and suction sidewalls and conducts the cooling fluid in alternating radial directions through the airfoil. The cooling channels remove heat from the pressure sidewall and the suction sidewall and thereby avoid overheating of these parts.
In a turbine airfoil, achieving a high cooling efficiency based on the rate of heat transfer is a significant design consideration in order to minimize the volume of coolant air diverted from the compressor for cooling.
Briefly, aspects of the present invention provide a turbine airfoil with turbulating features on a cold wall.
According a first aspect, a turbine airfoil is provided. The turbine airfoil comprises an outer wall delimiting an airfoil interior. The outer wall extends span-wise along a radial direction of a turbine engine and is formed of a pressure sidewall and a suction sidewall joined at a leading edge and a trailing edge. At least one partition wall is positioned in the airfoil interior connecting the pressure and suction sidewalls along a radial extent so as define a plurality of radial cavities in the airfoil interior. An elongated flow blocking body is positioned in at least one of the radial cavities so as to occupy an inactive volume therein. The flow blocking body extends in the radial direction and is spaced from the pressure sidewall, the suction sidewall and the partition wall, whereby: a first near-wall cooling channel is defined between the flow blocking body and the pressure sidewall, a second near-wall cooling channel is defined between the flow blocking body and the suction sidewall, and a connecting channel is defined between the flow blocking body and the partition wall. The connecting channel is connected to the first and second near-wall cooling channels along a radial extent to define a flow cross-section for radial coolant flow. The turbine airfoil further comprises turbulating features located in the connecting channel and being formed on the flow blocking body and/or on the partition wall. The turbulating features are effective to produce a higher coolant flow rate through the first and second near-wall cooling channels in comparison to the connecting channel
According a second aspect, a turbine airfoil is provided. The turbine airfoil comprises an outer wall delimiting an airfoil interior. The outer wall extends span-wise along a radial direction of a turbine engine and is formed of a pressure sidewall and a suction sidewall joined at a leading edge and a trailing edge. At least one partition wall is positioned in the airfoil interior connecting the pressure and suction sidewalls along a radial extent so as define a plurality of radial cavities in the airfoil interior. An elongated flow blocking body is positioned in at least one of the radial cavities so as to occupy an inactive volume therein. The flow blocking body extends in the radial direction and is spaced from the pressure sidewall, the suction sidewall and the partition wall, whereby: a first near-wall cooling channel is defined between the flow blocking body and the pressure sidewall, a second near-wall cooling channel is defined between the flow blocking body and the suction sidewall, and a connecting channel is defined between the flow blocking body and the partition wall. The connecting channel is connected to the first and second near-wall cooling channels along a radial extent. The turbine airfoil further comprises means for locally enhancing flow friction in the connecting channel, for effecting a higher coolant flow rate through the first and second near-wall cooling channels in comparison to the connecting channel
The invention is shown in more detail by help of figures. The figures show preferred configurations and do not limit the scope of the invention.
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Aspects of the present invention relate to an internally cooled turbine airfoil. In a gas turbine engine, coolant supplied to the internal cooling channels in a turbine airfoil often comprises air diverted from a compressor section. Achieving a high cooling efficiency based on the rate of heat transfer is a significant design consideration in order to minimize the volume of coolant air diverted from the compressor for cooling. Many turbine blades and vanes involve a two-wall structure including a pressure sidewall and a suction sidewall joined at a leading edge and at a trailing edge. Internal cooling channels are created by employing internal partition walls or ribs which connect the pressure and suction sidewalls in a direct linear fashion. It has been noted that while the above design provides low thermal stress levels, it may pose limitations on thermal efficiency resulting from increased coolant flow due to their simple forward or aft flowing serpentine-shaped cooling channels and relatively large flow cross-sectional areas. In a typical two-wall turbine airfoil as described above, a significant portion of the radial coolant flow remains toward the center of the flow cross-section between the pressure and suction sidewalls, and is hence underutilized for convective cooling.
Thermal efficiency of a gas turbine engine may be increased by lowering the coolant flow rate. However, as available coolant air is reduced, it may become significantly harder to cool the airfoil. For example, in addition to being able to carry less heat out of the airfoil, the lower coolant flows also make it much more difficult to generate high enough internal Mach numbers to meet cooling requirements. To address this issue, techniques have been developed to implement near-wall cooling, such as that disclosed in the International Application No. PCT/US2015/047332, filed by the present applicant, and herein incorporated by reference in its entirety. Briefly, such a near-wall cooling technique employs the use of a flow displacement element to reduce the flow cross-sectional area of the coolant, thereby increasing convective heat transfer, while also increasing the target wall velocities as a result of the narrowing of the flow cross-section. Furthermore, this leads to an efficient use of the coolant as the coolant flow is displaced from the center of the flow cross-section toward the hot walls that need the most cooling, namely, the pressure and suction sidewalls. Embodiments of the present invention provide a further improvement on the aforementioned near-wall cooling technique.
Referring now to
Referring to
Referring to
The illustrated cross-sectional shape of the flow blocking bodies 26 is exemplary. The precise shape of the flow blocking body 26 may depend, among other factors, on the shape of the radial cavity 40 in which it is positioned. In the illustrated embodiment, each flow blocking body 26 comprises first and second opposite side faces 82 and 84. The first side face 82 is spaced from the pressure sidewall 16 such that a first radially extending near-wall cooling channel 72 is defined between the first side face 82 and the pressure sidewall 16. The second side face 84 is spaced from the suction sidewall 18 such that a second radially extending near-wall cooling channel 74 is defined between the second side face 84 and the suction sidewall 18. Each flow blocking body 26 further comprises third and fourth opposite side faces 86 and 88 extending between the first and second side faces 82 and 84. The third and fourth side faces 86 and 88 are respectively spaced from the partition walls 24 on either side to define a respective connecting channel 76 between the respective side face 86, 88 and the respective partition wall 24. Each connecting channel 76 is connected to the first and second near-wall cooling channels 72 and 74 along a radial extent to define a flow cross-section for radial coolant flow. The provision of the connecting channel 76 results in reduced thermal stresses in the airfoil 10 and may be preferable over structurally sealing the gap between the flow blocking body 26 and the respective partition wall 24.
The resultant flow cross-section in each of the radial cavities 40 is generally C-shaped comprising of the first and second near-wall cooling channels 72, 74 and a respective connecting channel 76. A pair of adjacent radial flow passes F1, F2 of symmetrically opposed C-shaped flow cross-sections are formed on opposite sides of each flow blocking body 26. It should be noted that the term “symmetrically opposed” in this context is not meant to be limited to an exact dimensional symmetry of the flow cross-sections, which often cannot be achieved especially in highly contoured airfoils. Instead, the term “symmetrically opposed”, as used herein, refers to symmetrically opposed relative geometries of the elements that form the flow cross-sections (i.e., the near-wall cooling channels 72, 74 and the connecting channel 76 in this example). Furthermore, the illustrated C-shaped flow cross-section is exemplary. Alternate embodiments may employ, for example, an H-shaped flow cross-section defined by the near-wall cooling channels and the connecting channel. The pair of adjacent radial flow passes F1 and F2 may conduct coolant in opposite radial directions, being fluidically connected in series to form a serpentine cooling path, as disclosed in the International Application No. PCT/US2015/047332 filed by the present applicant.
In order to enhance convective heat transfer between the coolant and the outer wall 14, it may be expedient to provide turbulator ribs on the inner face of the hot outer wall 14 at the pressure sidewall 16 and/or the suction sidewall 74. A technical effect arising from adding turbulator ribs to the hot outer wall 14 is that it may encourage more coolant to travel along the smooth walls adjoining the connecting channel 76 than along the turbulator ribbed outer wall 14 adjoining the near-wall cooling channels 72, 74. A higher coolant flow through the connecting channel 76 may actually enhance heat transfer at the relatively cold walls 24, 86 and 88, 24 forming the connecting channels 76, while debiting heat transfer at the relatively hot outer wall 14. The present inventors have devised a mechanism for enhancing heat transfer at the hot outer wall by modifying one or more of the cold walls so as to enhance a friction factor in the connecting channel 76 in relation to the near-wall cooling channels 72, 74. This would produce a higher coolant flow rate through the near-wall cooling channels 72, 74 in comparison to the connecting channel 76. The inventive mechanism thus goes against the conventional wisdom that a cold wall modification has little positive benefit on the internal hot wall heat transfer.
The turbulator ribs 90 may be oriented in any direction transverse to the flow direction of the coolant K, i.e., transverse to the radial direction R. The arrangement of the turbulator ribs 90 enhances the friction factor for coolant flow through the connecting channel 76 in relation to the near-wall cooling channels 72, 74. As a result, the coolant flow tends to take the path of least resistance, leading to a local increase in coolant mass flow per unit area in the near-wall cooling channels 72, 74, at the cost of a local reduction in coolant mass flow per unit area in the connecting channel 76. Although the turbulator ribs 90 in the connecting channel 76 may increase the pressure drop of the channels somewhat, a net gain in hot wall heat transfer is achieved by effecting a higher coolant mass flow rate in the near-wall cooling channels 72, 74 than in the connecting channel 76. Since a large fraction of the coolant is now utilized for heat transfer with the hot outer wall 14, the coolant requirements may be reduced significantly, thereby increasing engine thermal efficiency. The geometry of the turbulator ribs 90, e.g. width of the turbulator ribs 90 across the connecting channel 76, radial height of the turbulator ribs 90, spacing between the turbulator ribs 90 etc., may be suitably designed to achieve a desired friction factor in each of the connecting channels 76.
In addition to increasing the friction factor of the connecting channel 76, the turbulator ribs 90 may be further configured to deflect flow in the connecting channel 76 toward the near-wall cooling channels 72, 74. One non-limiting example to achieve the above result is to provide turbulator ribs 90 with a V-shaped profile as shown in
It should be emphasized that the above-described V-shaped turbulator geometry is exemplary and other geometrical configurations may be employed. For example, in alternate embodiments, the turbulating features 90 may have a curvilinear or arc-shaped profile. In yet other embodiments, each of the the turbulating features 90 may consist of a straight rib that may be arranged inclined with respect to the flow direction of the coolant K, or may be perpendicular thereto. The precise geometry of the turbulating features may be determined, in each case, to achieve a desired flow friction factor in the connecting channel 76, and as an optional benefit, to deflect coolant from the connecting channel 76 toward the near-wall cooling channels 72, 74.
In order to further enhance convective heat transfer at the outer wall 14, additional turbulating features 92 may be optionally provided on one or both of the near-wall cooling channels 72, 74. In this case, the turbulating features 92 may be formed on the inner surface of the outer wall 14 at the pressure sidewall 16 and/or the suction sidewall 18. The turbulating features 90 and 92 may be mutually configured so as to produce a higher friction factor in the connecting channel 76 than in the near-wall cooling channels 72, 74, such that the coolant flow rate through the near-wall cooling channels 72, 74 is still higher than the connecting channel 76. For example, the turbulating features 92 may be dimensioned smaller in terms of width, and/or height, and/or array size with respect to the turbulating features 90.
While specific embodiments have been described in detail, those with ordinary skill in the art will appreciate that various modifications and alternative to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims, and any and all equivalents thereof.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/025122 | 3/31/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/171763 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5538394 | Inomata et al. | Jul 1996 | A |
5681144 | Spring | Oct 1997 | A |
5797726 | Lee | Aug 1998 | A |
6331098 | Lee | Dec 2001 | B1 |
8109726 | Liang | Feb 2012 | B2 |
9850763 | Itzel | Dec 2017 | B2 |
20090068022 | Liang | Mar 2009 | A1 |
20160102563 | Spangler | Apr 2016 | A1 |
20170051612 | Sezer | Feb 2017 | A1 |
20170159456 | Spangler | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
19526917 | Jan 1997 | DE |
0661414 | Jul 1995 | EP |
2149676 | Feb 2010 | EP |
2015171145 | Nov 2015 | WO |
WO-2015171145 | Nov 2015 | WO |
Entry |
---|
PCT International Search Report and Written Opinion dated Dec. 22, 2016 corresponding to PCT Application No. PCT/US2016/025122 filed Mar. 31, 2016. |
Number | Date | Country | |
---|---|---|---|
20190093487 A1 | Mar 2019 | US |