The present invention relates generally to turbine assemblies useful for harnessing wind and hydrokinetic energy. More particularly, the present invention relates to improved turbine assemblies, which are easy to assemble and service and used for wind and hydrokinetic energy applications.
Unfortunately, the conventional turbine assembly suffers from several drawbacks. By way of example, installing conventional turbine assemblies is a long and arduous task. Specifically, installing a single-piece-blade-and-radial-arm design to a hub is a time-consuming task. As another example, such an installation requires specialized equipment.
As yet another example, shipping of the conventional single-piece design is also difficult because the parts are large, odd-shaped, and difficult to package close together. Furthermore, due to the complex nature of construction of the conventional design, the cost of replacement pieces is high. Further still, the conventional design precludes non-conventional material utilization due to fatigue issues.
What is therefore needed is an improved system and method of assembling a turbine assembly which does not suffer from the drawbacks encountered by conventional designs.
In view of the foregoing, this invention provides novel systems and methods for harnessing wind and hydrokinetic energy with an improved turbine-assembly design which are easy to assemble and service.
In one aspect, the present invention provides a turbine. The turbine includes: (i) a shaft capable of rotation along its longitudinal axis and capable of connecting to an electrical generator, and the shaft having disposed thereon at least one shaft hinge; (ii) a radial arm including a first end having disposed thereon at least one first hinge; and (iii) a hinge pin that fits inside a cavity formed when the at least one shaft hinge of the shaft is in an engaged position with the at least one first hinge of the radial arm, and in the engaged position the hinge pin capable of connecting the radial arm to the shaft.
In certain embodiments of the present invention, the turbine includes a securing mechanism for immobilizing the hinge pin when it fits inside the cavity. The hinge pin is preferably a barrel-shaped body having at a first end a head portion and having defined at a second end an aperture which extends along a diameter of the hinge pin at the second end, and wherein the securing mechanism includes a securing pin which is capable of being inserted through the aperture when the hinge pin is inside the cavity in the engaged position. The securing mechanism may also include a washer, and in the engaged position, the hinge pin capable of being passed through the washer before the securing pin is inserted through the aperture.
The inventive turbine may also include a fastening assembly which includes a clamp portion and a hinge portion, the clamp portion capable of engaging with or being connected to a blade component of the turbine and the hinge portion engaging with at least one hinge disposed at a second end of the radial arm. Preferably, the blade has a helical shape.
In another aspect, the present invention provides another turbine. The turbine includes: (i) a radial arm including a first end and a second end, the radial arm at the first end is capable of connecting to a shaft that is capable of rotation along its longitudinal axis and capable of connecting to an electrical generator, and the radial arm at the second end has disposed thereon at least one second hinge; (ii) a blade that includes or has connected thereto the blade hinge; and (iii) a hinge pin that fits inside a cavity formed when the blade hinge is in an engaged position with at least one the second hinge of the radial arm, and in the engaged position the hinge pin capable of connecting the radial arm to the shaft. Preferably, the blade has a helical shape.
In certain embodiments, the present invention further includes a securing mechanism for immobilizing the hinge pin when it fits inside the cavity. Preferably, the hinge pin is a barrel-shaped body having at a first end a head portion and having defined at a second end an aperture which extends along a diameter of the hinge pin at the second end, and wherein the securing mechanism includes a securing pin which is capable of being inserted through the aperture when the hinge pin is inside the cavity in the engaged position. The securing mechanism may include a washer, and in the engaged position, the hinge pin capable of being passed through the washer before the securing pin is inserted through the aperture.
In preferred embodiments of the present invention, the blade is connected to the blade hinge by a fastening assembly which includes a clamp portion and a hinge portion, the clamp portion capable of engaging with and being secured on the blade and the hinge portion including a blade hinge that engages with at least one first hinge disposed at a first end of the radial arm. Preferably, the clamp portion has two legs and when the clamp portion engages with the blade, the two legs are immobilized using a u-shaped bolt.
In yet another aspect, the present invention provides a shaft. The shaft is capable of rotation along its longitudinal axis and includes a first end and a second end. The first end is capable of connecting to an electrical generator, and the second end has at least one shaft hinge that is designed to connect to at least one hinge disposed on a radial arm. The shaft may include a second end that includes three shaft hinges thereon, each shaft hinge connects to at least one hinge disposed on the radial arm. The radial arm may include a first end and a second end, the first end includes a first hinge and a second end includes a second hinge, the first hinge is capable of connecting to a shaft hinge which is part of or connected to a shaft, and the second hinge is capable of connecting to a blade hinge which is part of or connected to a blade. Preferably, the radial arm is made from at least one material selected from a group consisting of aluminum, fiber glass, carbon fiber, or fiber-reinforced plastic.
In yet another aspect, the present invention discloses a fastening assembly. The fasting assembly includes (i) a clamp portion; (ii) a hinge portion; and (iii) wherein the clamp portion is capable of engaging with or being connected to a blade and the hinge portion is capable of engaging with at least one hinge disposed at one end of a radial arm. The fastening assembly may also include a u-shaped bolt, wherein the clamp portion includes two legs that are immobilized using the u-shaped bolt.
In yet another aspect, the present invention discloses a method of assembling a turbine. The method includes: (i) obtaining a fastener having a clamp portion and a hinge portion, the clamp portion capable of engaging with a blade and the hinge portion including a blade hinge; (ii) securing the clamp portion around the blade by engaging the clamp portion around the blade; (iii) engaging blade hinge with at least one second hinge disposed on a radial arm; and (iv) inserting a hinge pin through a cavity formed when the blade hinge engages with at least one the second hinge disposed on a radial arm and thereby connecting the blade to the radial arm. Preferably, the at least one second hinge is part of or connected to the radial arm. Securing may include: (i) inserting the blade through a u-shaped clamp with two legs; and (ii) tightening the two legs to immobilize the fastener on the blade. Preferably, tightening includes using a u-shaped bolt to clamp the two legs. Preferred embodiments of the present invention may further include the step of immobilizing the hinge pin inside the cavity after the inserting the hinge pin through the cavity. Preferred embodiments of the present invention may yet further include the step of connecting at least one first hinge on the radial arm to a shaft which is capable of rotation around its longitudinal axis and capable of connecting to an electrical generator.
In yet another aspect, the present invention discloses another method for assembling a turbine. The method includes: (i) obtaining a shaft having thereon at least one shaft hinge; (ii) engaging at least one the shaft hinge with at least one first hinge disposed on a radial arm; and (iii) inserting a hinge pin through a cavity formed when the shaft hinge engages with at least one the first hinge disposed on a radial arm and thereby connecting the shaft to the radial arm. Preferably, the at least one the first hinge is part of or connected to the radial arm. Preferred embodiments of the present invention may include the further step of immobilizing the hinge pin inside the cavity after the inserting the hinge pin through the cavity.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following descriptions of specific embodiments when read in connection with the accompanying figures.
In the following description numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without limitation to some or all of these specific details. In other instances, well known process steps have not been described in detail in order to not unnecessarily obscure the invention.
Moreover, less or more than two locations on a shaft can be configured to support radial arms. The dimensions of the blade are one important factor that drives how many radial arms are required to stabilize the blade under operation. In preferred embodiments of the present invention, however, two radial arms effectively secure each blade 106 to shaft 102.
Although turbine 100 can be adapted for use in hydrokinetic applications, it is preferably used for harnessing wind energy. To this end, blade 106 used in turbine 100 preferably is of a helical shape. The present invention recognizes that a helical shaped blade is far more efficient than conventional blade shapes to harness wind or hydrokinetic energy.
According to
Shaft 102 is composed of any rigid material, such as steel or aluminum, that effectively provides support to and stabilizes various turbine components (e.g., radial arm 104 and blade 106) during operation. However, shaft 102 is preferably made from aluminum. Aluminum is not used in the conventional design due to metal fatigue issues. But the present invention's hinging and clamping methods permit reduced stress levels, making use of aluminum appropriate. Aluminum is preferable due to its increased stiffness and lower production costs. Further, aluminum increases the end-of-life value of a turbine because it can be melted down and reused for other applications.
Shaft 102 can have any dimensions which provide the requisite support to the various turbine components; however, the diameter of shaft 102 is preferably one that allows it to engage with hub 112, which houses the generator. Consequently, shaft 102 has a diameter that ranges between about 3 inches and about 6 inches. A length of the shaft preferably ranges between about 96 inches and about 169 inches.
Radial arm 104 is made from any material that effectively links shaft 102 and blade 106 and can sustain the connection under operation. Preferably, radial arm 104 is made from at least one member selected from a group consisting of aluminum, fiber-reinforced plastic, fiber glass, and carbon fiber. More preferably, radial arm is made from aluminum. Radial arm 104 has a length that is between about 48 inches and about 72 inches and a thickness that is between about 1 inches and about 3 inches.
Blade 106 is composed of any material that is rigid enough to handle the energy impinging upon it. Preferably, blade 106 is made from aluminum. In accordance with one embodiment of the present invention, blade 106 has a helical shape having a radius of curvature that is between about 1.0 m and about 3.0 m. A length of blade 106 is preferably between about 3.0 m and about 6.0 m and a thickness of blade 106 is preferably between about 1.0 inch and about 3.0 inches.
With regard to connections at different locations along a length of shaft 102,
In certain other embodiments of the present invention, pin 710 is effectively secured using additional components inside the cavity created by an engaged position of hinge portion 708 and hinge 706. By way of example, an aperture is defined near one end of hinge pin 710. A securing pin 714, which is different from hinge pin 710, is inserted through the aperture when hinge pin 710 occupies the cavity created in the engaged position of hinge portion 708 and hinge 706. Positioned inside the aperture of hinge pin 710, securing pin 714 immobilizes the hinge pin inside the cavity and further secures the connection between hinge 706 and hinge portion 708.
In an alternative embodiment of the present invention, a washer is used before securing pin 714 is inserted through the aperture. Specifically, as hinge pin 710 occupies the cavity created by the engaged position of hinge portion 708 and hinge 706, hinge pin 710 also passes through a washer 712 before securing pin 714 is inserted into the aperture. The washer provides additional protection against movement or dislodging of hinge pin 710 from the cavity to break the connection between hinge 706 and hinge portion 708.
It is noteworthy that hinge 706 disposed on radial arm 104 can be either part of radial arm 104 or, in the alternative, is connected to a radial arm. Specifically, in one embodiment of the present invention, radial arm, as fabricated, includes at least one hinge. In an alternative embodiment of the present invention, however, a plate is fabricated to include a hinge and that plate is attached or connected to one end of radial arm 104.
Shaft plate 816, which ultimately attaches to a radial arm, attaches to shaft 102 using a flange 802. As shown clearly in
Although illustrative embodiments of this invention have been shown and described, other modifications, changes, and substitutions are intended. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure, as set forth in the following claims.