This invention relates to a turbine assembly which may be used for the purpose of generation of electricity. The turbine assembly may be activated by fluid currents, such as wind or water. More particularly, the turbine assembly may be used in hydro-electric power generation systems utilizing kinetic water energy.
Turbines for power generation are known in the art. U.S. Pat. No. 5,009,568 refers to a wave activated generating apparatus comprising a water turbine mounted for rotation within a housing on an upright output shaft. The housing includes a back panel and opposing sides and upper and lower surfaces that form a water nozzle which is adapted to face oncoming waves and to direct them into the housing. A wave splitter directs a portion of each oncoming wave directly against the facing surfaces of blades of the water turbine while another wave portion is directed against the back panel of the housing and redirected against the facing surfaces of the opposite water turbine blades.
The turbine may be mounted on a shaft which is operably connected to a weighted fly wheel of a power generator.
U.S. Pat. No. 5,664,418 refers to a vertical axis wind turbine supported on a frame held in place by an encircling series of crescent shaped tubular deflector vanes. The vanes widen towards the core or hub of the turbine concentrating the wind. The wind is trapped momentarily on entering a hollow interior of the turbines. A shaft supporting the turbines is coupled to a drive shaft which is then associated with a differential gear box. There are also provided a pair of split axle drive shafts coupled to the differential gear box which carry power through brakes and wheel plate couplers to electric generators.
U.S. Pat. No. 5,451,138 describes an elongate turbine with airfoil-shaped blades mounted transversely to the direction of flow of fluid. The turbine rotates in the same direction irrespective of the direction of fluid flow. Related U.S. Pat. No. 5,451,137 describes a similar turbine with the blades arranged in a helical configuration. The helical design has been used for power generation from tides and currents and has been referred to as the Gorlov Helical Turbine after the inventor, Alexander Gorlov.
In regard to the prior art it has been found that the turbine structures are unduly complex making the turbines difficult and costly to manufacture. The connection between the turbine and the generator has also been found to be complicated in structure especially in regard to U.S. Pat. Nos. 5,009,568 and 5,664,418.
It is an object of the invention to provide a turbine assembly which is simple in structure and efficient in operation.
It is a further object of the invention to provide a blade assembly for a turbine assembly.
It is a still further object of the invention to provide the public with a useful alternative to existing turbines and turbine blade assemblies. Other objects will be evident from the following description.
In one form although it need not be the only or indeed the broadest form, the invention resides in a turbine assembly comprising a blade assembly and a generator. The blade assembly has a plurality of curved blades with an inner end of each of the curved blades terminating at an inner cavity or void. The inner cavity or void is open on one side. The generator is located within the inner cavity or void and is coupled or attached to the blade assembly.
The cavity is suitably sealed and provides an air pocket for the generator. The cavity may be filled with an insulator fluid such as oil or air.
The blade assembly suitably has a central hub which may engage in male-female relationship or spigot and socket relationship with a mating shaft of the generator. Preferably the central hub of the blade assembly has a hollow interior and thus forms a socket for engagement with a shaft of the generator which is preferably solid and forms a mating spigot for the socket. However, it is also possible that the generator shaft has a socket for engaging with a spigot of the central hub of the blade assembly.
The blade assembly may therefore be releasably attached to the generator shaft and thus there may be provided suitable fasteners interconnecting the blade assembly hub and the generator shaft.
In any of the above arrangements it will be appreciated that the blade assembly will rotate a central shaft of the generator and thus generate an electric current in conventional manner.
Each of the blades of the blade assembly are suitably arcuate forming a concave surface facing the impact of fluid. The opposite surface may be convex or planar. Preferably each of the blades has a uniform width or transverse dimension along their length but this is not essential. Each blade may have a dynamic structure that flexes to expand under fluid pressure and collapses under reverse pressure.
Each blade may suitably be pitched at an angle to the axis of rotation. A suitable pitch is 45 degrees. The pitch may vary from one end of the blade to the other.
The generator may be used to produce direct current or alternating current as is known in the art. The generator may also be electric, hydraulic or pneumatic.
Reference may be made to a preferred embodiment of the invention as shown in the attached drawings wherein:
The turbine assembly 10 shown in
The blade assembly 11 includes a central shaft 15 that rotates with the blade assembly 11. The shaft 15 couples to a rotating central shaft 16 of a generator 20 that is housed within the inner cavity 14, as seen most clearly in
The shaft 15 is conveniently hollow with a key way (not visible) that mates to a key 24 on the shaft 16 of the generator 20. The key 24 and key way ensures that the shaft 16 rotates with the blade assembly 11 to operate the generator 20. The generator 20 is provided with electrical conductors 25 and 26 as shown in
Referring to
As seen clearly in
In operation the turbine 10 is placed in a fluid flow zone. The fluid flow zone may be a water flow zone such as a river current or an ocean current. The turbine 10 may also be configured for power generation from air flow (wind) but the inventor recognises that river currents and ocean currents are far more reliable than wind. In
The blades of the embodiment shown in
A further embodiment of a turbine assembly 60 is shown in
Suitable material for the blades of the blade assembly include plastic or metal such as aluminium. The turbine assembly could be produced by extrusion moulding, blow moulding or casting.
Filling the base 71 with water or air may also be useful for regulating the depth of the turbine assembly to be positioned in maximum current flow. Adding water to the base would cause it to sink to a lower level. Pumping air into the base to displace water would cause the base to float to a higher level. By pumping in air or allowing in water the level of the base can be changed so that the turbine assembly is positioned in a maximum current zone.
The inventor envisages that this process could be automated by positioning flow sensors at various depths and automatically repositioning the turbine assemblies to the depth having the strongest current.
It will be appreciated that the void or cavity 14 may be filled with air and thus there is the possibility of gases or ions which could be formed as a by-product of electricity being generated by generator 20 within cavity 14. Should the cavity 14 require additional air to keep the cavity dry, air can be delivered by a simple air hose which would be connected to an air compressor shore side. The hose supplying air may accompany the conductors 25 and 26 from shore side. The generator 20 would have reasonable resistance to the elements of corrosion (e.g. seawater) within cavity 14.
It is considered that the turbine of the invention could be used very beneficially as a subsea hydroelectric power station which will not cause pollution. It is also believed that the tides or currents of an ocean are predictable and this will ensure successful operation of the turbine of the invention.
Persons skilled in the art will realise that various issues arise when connecting power generation units to a grid. The issues have been addressed for various other forms of power generation, such as wind generators. It is envisaged that appropriate transformers and phase matching equipment would be located near the power generation station, but not underwater. For example, in an undersea application that transformers would be located on the coastline.
It will also be understood by persons skilled in the art that various safety devices such as fail-safe brakes, and over-current protection will be incorporated in the turbine assembly for practical application. These devices are well known and are omitted for the sake of brevity.
The generator 20 may also have associated therewith a support so as to resist vibration due to the rotation of the blade assembly 11. The control of vibration is well known to turbine engineers and will be implemented as required for efficient operation of the invention.
Although the description has described the primary embodiment of an electrical generator it should be appreciated that the invention is not limited to this particular implementation. The generator 20 may be any suitable device that converts kinetic energy to other useful energy. Thus the generator could be hydraulic or pneumatic.
In summary it will be appreciated that the blade assembly of the invention is simple in structure and has a direct coupling to a generator located within an open void or cavity of the blade assembly.
Number | Date | Country | Kind |
---|---|---|---|
2008900080 | Jan 2008 | AU | national |
PCT/AU2009/000010 | Jan 2009 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2009/000010 | 1/6/2009 | WO | 00 | 6/28/2010 |