FIELD OF THE INVENTION
This invention relates to means for attaching blades and platforms to a turbine disc, and particularly to attaching platforms that are non-integral with the blades.
BACKGROUND OF THE INVENTION
A gas turbine blade can be cast of a high-temperature metal alloy in the form of a single crystal per blade to maximize strength. It is difficult and expensive to reliably cast an integral platform in a single-crystal blade casting, due to the complexity of the blade/platform shape and the corresponding complexity and size of the casing mold. Therefore, non-integral platforms have been attached to the turbine disk between blades.
For example, U.S. Pat. No. 4, 621,979 shows non-integral platforms mounted by a pin and hinge structure. In this patent, a relatively simple blade shape is shown. However, modern turbine blades have a high pitch angle relative to the turbine axis, and high camber and thickness. This geometry requires a platform with a complex asymmetric perimeter, which complicates designing a platform that can be mounted and replaced between the blades. Axial mounting would require a very narrow platform of constant curvature. Radial mounting is difficult regarding sealing around the platform edges, and limiting asymmetric cantilevered centrifugal stress on the platform.
The present invention solves these problems. It allows the platforms to be mounted and removed radially, and to be sealed without removing any blades, thus providing fast platform replacement.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is explained in the following description in view of the drawings that show:
FIG. 1 is a perspective view of a turbine blade and two adjacent platforms mounted on the circumference of a turbine disk.
FIG. 2 is a top or radially outer view of FIG. 1.
FIG. 3 is a sectional view taken along line 3-3 of FIG. 2.
FIG. 4 is an axially front view looking aft at three turbine blades in a disk. The right platform is being mounted by tilted radial insertion.
FIG. 5 is a bottom or radially inner view of FIG. 1.
FIG. 6 is a bottom view of a detached platform.
FIG. 7 is a partial perspective view of a blade root, showing a seal wire in a slot.
FIG. 8 is a sectional view as in FIG. 3, showing an optional damper pin.
FIG. 9 shows a seal slot embodiment with an upper wedge portion.
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a turbine blade 24 with a suction side 26, a leading edge 27, a pressure side 28, a trailing edge 29, and a shank 30. The shank may be formed in the known and illustrated fir tree shape for mounting to a turbine disk 32 by axial insertion into a mating slot 34 as known in the art. Herein, the terms “axial” and “radial” mean with respect to the disk rotation axis. Adjacent non-integral platforms 36, 38 are mounted individually to the disk 32 by a respective pin or bolt 40, for example with a clevis or hinge attachment 42.
FIG. 2 is a top or radially outer view of FIG. 1. Each platform 36, 38 has rotationally forward edge portions, 44A (or optionally 44B) and 45, and rotationally rearward edge portions 46, 47 with respect to the rotation direction 48 of the disk. Each platform may have one or more rotationally rearward edge lap portions 50 that underlie a forward edge portion 45 of the adjacent platform, forming a ship lap that eliminates cantilevered centrifugal bending of the rearward portions 47 of the platforms. A rotationally rearward central edge portion 46 may underlie a shelf 49 on the suction side of the adjacent blade for this same reason. The rotationally forward central edge portion 44A may follow the camber of the pressure side 28 of the adjacent blade 24, or it may follow a lesser curvature 44B. Herein “less curved” means a curve with a larger average radius (i.e. straighter) than another curve. For example the edge 44B may follow a circular arc between the leading and trailing edges 27, 29 of the blade 24, following a ridge 52 on the pressure side 28 of the blade.
FIG. 3 is a sectional view taken along line 3-3 of FIG. 2, showing the rotationally forward central edge portion 44B of platform 38 overlying a seal element 51 on the ridge 52 on the pressure side of the blade. This forward central edge portion 44B does not underlie a shelf on the pressure side of the blade, so as to allow mounting of the platform by tilted radial insertion as later described. Wedge portions 64 on the respective edges 46, 44a of the platforms 36, 38 cause the seal element 51 to wedge against the seal slot under centrifugal force for a tight seal. Cooling channels 53 may be provided in the blade as known.
FIG. 4 is an axially front view looking aft at three turbine blades 23, 24, 25 mounted in a disk 32. Each blade has a pressure side 26, a suction side 28, and a shank 30. Each shank is mounted to a turbine disk 32 by a fir tree structure. Platform 36 is mounted to the disk between the pressure side 28 of the first turbine blade 23 and the suction side 26 of the second turbine blade 24. Platform 38 is illustrated in the process of being mounted to the disk between the pressure side 28 of the second turbine blade 24 and the suction side 26 of the third turbine blade 25. In order to allow radial insertion 57 of the platform 38, the platform attachment 42 provides room to tilt the platform 38 at an angle 60 during mounting to provide mounting clearance between the rotationally rearward edge portions 50 and the overlapping portions 45 of the adjacent platform (not shown), and to provide clearance between the rearward edge portion 46 and the overlapping suction side shelf 49, if any, of the adjacent blade 25.
FIG. 5 is a bottom or radially inner view of FIG. 1, showing cooling channels 53 in the blade shank 30 and lugs 54 on the platforms 36, 38 for the mounting pins or bolts 40. FIG. 6 is a bottom view of a detached platform 36.
FIG. 7 is a perspective view of a root portion of a blade, showing a seal wire 51 in a seal slot 58. The wire and slot may encircle the blade as shown. The wire may be formed of a cobalt alloy, and may have a gap 60 at the trailing edge. The seal slot may be formed in a raised portion of the blade around the blade root. The pressure side ridge 52 is part of this raised portion, on which the seal slot and wire may follow the pressure side camber or a lesser curve as previously described per FIG. 2. The seal slot may be bounded in part by the suction side shelf 49. Clearance 62 between the shelf 49 and the seal element 51 allows insertion of the rearward portion 46 of a platform between them during tilted mounting of the platform as previously described.
FIG. 8 is a sectional view as in FIG. 3, showing an optional damper pin 56, which may be a straight or constantly curved pin inserted below the seal element 51 and extending between the leading and trailing edges 27, 29. Such pins may serve as both a seal element and a damper element, and may be round or flattened on one side in various embodiments.
FIG. 9 shows a seal slot 58 with an upper wedge portion 65 that cause the seal wire 51 to wedge by centrifugal force against the respective edges 46 and 44B of adjacent platforms 36, 38. The edges 46 and 44B may be vertical in this embodiment.
Benefits of the invention include strength and low cost due to a simple blade shape and minimal size, since it is cast without an integral platform. It allows replacing individual platforms radially without replacing or even removing a blade. It eliminates cantilevered centrifugal stress on the platform, and provides effective sealing of the platform. Non-integral platforms facilitate engineered surface contouring that reduces boundary layer vortices and thus energy loss, as described for example in U.S. Pat. Nos. 7,134,842 and 7,690,890.
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.